DOI QR코드

DOI QR Code

A Review on Past Cases of Geophysical Explorations for Assessment of Slope Stability

사면 안정성 평가를 위한 물리탐사 적용 사례 분석

  • Cho, Ahyun (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Joung, Inseok (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Jeong, Juyeon (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Song, Seo Young (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Nam, Myung Jin (Department of Energy and Mineral Resources Engineering, Sejong University)
  • 조아현 (세종대학교 에너지자원공학과) ;
  • 정인석 (세종대학교 에너지자원공학과) ;
  • 정주연 (세종대학교 에너지자원공학과) ;
  • 송서영 (세종대학교 에너지자원공학과) ;
  • 남명진 (세종대학교 에너지자원공학과)
  • Received : 2022.01.30
  • Accepted : 2022.02.26
  • Published : 2022.02.28

Abstract

Since landslide can cause huge damages to many facilities, close characterization of slopes is needed for appropriate reinforcements for the unstable ones in order to prevent the damages. Geophysical surveys, which can characterize a large area at a relatively low cost without disturbing slopes, have been widely employed for the assessment of slope stability in other countries. However, only conventional direct investigation methods are mainly used in Korea. In this paper, we analyzed various cases, which evaluated slope stabilities by characterizing slopes using geophysical exploration. First, we introduced changes in geophysical properties due to unstable media of slope like fracture location, fracture connectivity and distribution of groundwater level, and subsequently discussed the applicability of geophysical methods to the detection of the changes; the methods include electrical resistivity survey, seismic survey, self-potential survey, induced polarization survey and ground penetrating radar. Based on this description, we analyzed how geophysical surveys were performed on various slopes.

산사태가 발생하면 많은 시설에 큰 위험을 초래할 수 있기 때문에, 이를 예방하기 위해 사면의 특성을 상세하게 조사하고 불안정한 사면에 대해서는 적절히 보강을 수행해야 한다. 물리탐사는 사면을 교란시키지 않고 비교적 저렴한 비용으로 넓은 영역의 특성을 조사할 수 있는 방법으로, 외국에서는 사면의 안정성 조사에 널리 쓰이고 있는 반면 국내에서는 물리탐사 외의 직접적인 조사 방법들이 주로 쓰이고 있다. 이 논문에서는 물리탐사를 이용하여 사면의 특성을 파악하여 안정성을 평가한 사례들을 분석하고자 한다. 먼저 불안정한 사면물질, 균열 위치 및 연결성, 지하수위 분포에 따른 물성의 변화 등을 알아본 뒤, 이러한 물성 변화를 파악하기 위해 적용된 물리탐사 기법들인 전기비저항 탐사, 탄성파 탐사를 비롯해 자연전위 탐사, 유도분극 탐사, 지표투과레이더 탐사 등의 적용법에 대해 알아본다. 이에 기초하여, 기존의 여러 사면에서 실제로 수행되었던 물리탐사 사례들을 분석하였다.

Keywords

Acknowledgement

이 논문은 산업통상자원부의 재원으로 KETEP의 지원(No. 20194010201920) 및 원자력안전위원회의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국원자력안전재단의 지원을 받아 수행된 연구사업(No. 2109092-0121-WT112)입니다.

References

  1. Akpan, S.B., Patrick, I.V., James, S.U. and Agom, D.I. (2015) Determinants of decision and participation of rural youth in agricultural production: a case study of youth in southern region of Nigeria. Russ. J. Agric. Socioecon. Sci., v.43(7), p.35-48.
  2. Archie, G.E. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, v.146(01), p.54-62. https://doi.org/10.2118/942054-G
  3. Bogoslovsky, V.A. and Ogilvy, A.A. (1977) Geophysical methods for the investigation of landslides. Geophys., v.42(3), p.562-571. doi: 10.1190/1.1440727
  4. Bortolozo, C.A., Motta, M.F.B., de Andrade, M.R.M., Lavalle, L.V.A., Mendes, R.M., Simoes, S.J.C., Mendes, T.S.G. and Pampuch, L.A. (2019) Combined analysis of electrical and electromagnetic methods with geotechnical soundings and soil characterization as applied to a landslide study in Campos do Jordao City, Brazil. J. Appl. Geophy., v.161, p.1-14. doi: 10.1016/j.jappgeo.2018.11.017
  5. Boyd, J., Chambers, J., Wilkinson, P., Peppa, M., Watlet, A., Kirkham, M., Jones, L., Swift, R., Meldrum, Phil., Uhlemann, S. and Binley, A. (2021) A linked geomorphological and geophysical modelling methodology applied to an active landslide. Landslides, p.1-16. doi: 10.1007/s10346-021-01666-w
  6. Bruno, F. and Martillier, F. (2000) Test of high-resolution seismic reflection and other geophysical techniques on the Boup landslide in the Swiss Alps. Surv. Geophys., v.21(4), p.335-350. doi: 10.1023/A:1006736824075
  7. Cardarelli, E. and Di Filippo, G. (2009) Integrated geophysical methods for the characterisation of an archaeological site (Massenzio Basilica-Roman forum, Rome, Italy). J. Appl. Geophy., v.68(4), p.508-521. doi: 10.1016/j.jappgeo.2009.02.009
  8. Cardarelli, E. and Di Filippo, G. (2009) Electrical resistivity and induced polarization tomography in identifying the plume of chlorinated hydrocarbons in sedimentary formation: a case study in Rho (Milan-Italy). Waste. Manag. Res., v.27(6), p.595-602. doi: 10.1177%2F0734242X09102524 https://doi.org/10.1177%2F0734242X09102524
  9. Carson, M.A. and Kirkby, M.J. (1972) Hillslope form and process.
  10. Chambers, J.E., Wilkinson, P.B., Kuras, O., Ford, J.R., Gunn, D.A., Meldrum, P.I., Pennington, C.V.L., Weller., A.L., Hobbs., P.R.N. and Ogilvy, R.D. (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphol., v.125(4), p.472-484. doi: 10.1016/j.geomorph.2010.09.017
  11. Choi, S.H., Kim, H.S. and Kim, J.S. (2008) IP Characteristics of Sand and Silt for Investigating the Alluvium Aquifer. J. Eng. Geol., v.18(4), p.423-431.
  12. Colombero, C., Baillet, L., Comina, C., Jongmans, D. and Vinciguerra, S. (2017) Characterization of the 3-D fracture setting of an unstable rock mass: From surface and seismic investigations to numerical modeling. Journal of Geophysical Research: Solid Earth, v.122(8), p.6346-6366. doi: 10.1002/2017JB014111
  13. Colombero, C., Comina, C., Umili, G. and Vinciguerra, S. (2016) Multiscale geophysical characterization of an unstable rock mass. Tectonophysics, v.675, p.275-289. doi: 10.1016/j.tecto.2016.02.045
  14. Cruz, G.M.B. (2018) Site scale slow moving landslides: characterization by monitoring and modelling (Doctoral dissertation, University of Liverpool).
  15. Dahlin, T., Lofroth, H., Schalin, D. and Suer, P. (2013) Mapping of quick clay using geoelectrical imaging and CPTU-resistivity. Near Surf. Geophys., v.11(6), p.659-670. doi: 10.3997/1873-0604.2013044
  16. de Jesus Arce-Mojica, T., Nehren, U., Sudmeier-Rieux, K., Miranda, P.J. and Anhuf, D. (2019) Nature-based solutions (NbS) for reducing the risk of shallow landslides: Where do we stand?., Int. J. Disaster Risk Reduct., v.41, p.101-293. doi: 10.1016/j.ijdrr.2019.101293
  17. Deparis, J., Jongmans, D., Cotton, F., Baillet, L., Thouvenot, F. and Hantz, D. (2008) Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps. Bull. Seismol. Soc. Am., v.98(4), p.1781-1796. doi: 10.1785/0120070082
  18. Di Maio, C., De Rosa, J., Vassallo, R., Coviello, R. and Macchia, G. (2020) Hydraulic conductivity and pore water pressures in a clayey landslide: Experimental data. Geosci., v.10(3), p.102. doi: 10.3390/geosciences10030102
  19. Fatahi, B., Le, T.M., Le, M.Q. and Khabbaz, H. (2013) Soil creep effects on ground lateral deformation and pore water pressure under embankments. Geomech. Geoeng., v.8(2), p.107-124. doi: 10.1080/17486025.2012.727037
  20. Gex, P. (1980) Phenomenes d'electrofiltration lies a quelques sites de barrages.
  21. Gex, P. (1993) Mesures d'electrofiltration sur le glissement de terrain de la Frasse (Prealpes romandes, Suisse). Hydrogeologie (Orleans), (3), p.239-246.
  22. Gokturkler, G., Balkaya, C. and Erhan, Z. (2008) Geophysical investigation of a landslide: The Altindag landslide site, Izmir (western Turkey). J. Appl. Geophy, v.65(2), p.84-96. doi: 10.1016/j.jappgeo.2008.05.008
  23. Haraguchi, K., Li, H.J., Matsuda, K., Takehisa, T. and Elliott, E. (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA- clay nanocomposite hydrogels. Macromolecules, v.38(8), p.3482-3490. doi: 10.1021/ma047431c
  24. Harba, P., Pilecki, Z. and Krawiec, K. (2019) Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S-wave velocity field in landslide subsurface. Acta Geophys., v.67(6), p.1875-1883. doi: 10.1007/s11600-019-00344-9
  25. Heincke, B., Gunther, T., Dalsegg, E., Ronning, J.S., Ganerod, G.V. and Elvebakk, H. (2010) Combined three-dimensional electric and seismic tomography study on the Aknes rockslide in western Norway. J. Appl. Geophy., v.70(4), p.292-306. doi: 10.1016/j.jappgeo.2009.12.004
  26. Jongmans, D. and Garambois, S. (2007) Geophysical investigation of landslides: a review. Bull. Soc. Geol. Fr., v.178(2), p.101-112. doi: 10.2113/gssgfbull.178.2.101
  27. Kaminski, M., Zientara, P. and Krawczyk, M. (2021) Electrical resistivity tomography and digital aerial photogrammetry in the research of the "Bachledzki Hill" active landslide-in Podhale (Poland). Eng. Geol., v.285, p.106004. https://doi.org/10.1016/j.enggeo.2021.106004
  28. Kim, B., Nam, M.J., Jang, H., Jang, H., Son, J.S. and Kim, H.J. (2017) The Principles and Practice of Induced Polarization Method. Geophys. and Geophys. Explor., v.20(2), p.100-113. doi: 10.7582/GGE.2017.20.2.100
  29. Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Sdao, F. and Rizzo, E. (2003) High-resolution geoelectrical tomographies in the study of Giarrossa landslide (southern Italy). Bull. Eng. Geol. Environ., v.62(3), p.259-268. doi: 10.1007/s10064-002-0184-z
  30. Lee, C.S. (2007), Case study of slop stabilization countermeasure, 2007 Workshop of Engineering Geology, KSEG, p.149-214.
  31. Lee, K.M., Kim, H., Lee, J.H., Seo, Y.S. and Kim, J.S. (2007) Analysis on the Influence of Groundwater Level Changes on Slope Stability using a Seismic Refraction Survey in a Landslide Area. KSEG, v.17(4), p.545-554.
  32. Levy, C., Baillet, L., Jongmans, D., Mourot, P. and Hantz, D. (2010) Dynamic response of the Chamousset rock column (Western Alps, France). J. Geophys. Res.: Earth Surf., v.115(F4). doi: 10.1029/2009JF001606
  33. Levy, C., Jongmans, D. and Baillet, L. (2011) Analysis of seismic signals recorded on a prone-to-fall rock column (Vercors massif, French Alps). Geophys. J. Int., v.186(1), p.296-310. doi: 10.1111/j.1365-246X.2011.05046.x
  34. Mainsant, G., Larose, E., Bronnimann, C., Jongmans, D., Michoud, C. and Jaboyedoff, M. (2012) Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J. Geophys. Res.: Earth Surf., v.117(F1). doi: 10.1029/2011JF002159
  35. Manconi, A. and Giordan, D. (2016) Landslide failure forecast in near-real-time. Geomat. Nat. Hazards Risk, v.7(2), p.639-648. doi: 10.1080/19475705.2014.942388
  36. Mandal, B. and Mandal, S. (2018) Analytical hierarchy process (AHP) based landslide susceptibility mapping of Lish river basin of eastern Darjeeling Himalaya, India. Adv. Space Res., v.62(11), p.3114-3132. doi: 10.1016/j.asr.2018.08.008
  37. Marescot, L., Monnet, R. and Chapellier, D. (2008) Resistivity and induced polarization surveys for slope instability studies in the Swiss Alps. Eng. Geol., v.98(1-2), p.18-28. doi: 10.1016/j.enggeo.2008.01.010
  38. McCann, D.M. and Forster, A. (1990) Reconnaissance geophysical methods in landslide investigations. Eng. Geol., v.29(1), p.59-78. doi: 10.1016/0013-7952(90)90082-C
  39. Meric, O., Garambois, S. and Orengo, Y. (2006, April) Large gravitational movement monitoring using a spontaneous potential network. In 19th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (cp-181). Eur. Assoc. Geoscientists & Engineers. doi: 10.3997/2214-4609-pdb.181.19
  40. Naudet, V., Lazzari, M., Perrone, A., Loperte, A., Piscitelli, S. and Lapenna, V. (2008) Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy). Eng. Geol., v.98(3-4), p.156-167. doi: 10.1016/j.enggeo.2008.02.008
  41. Palis, E., Lebourg, T., Tric, E., Malet, J.P. and Vidal, M. (2017) Long-term monitoring of a large deep-seated landslide (La Clapiere, South-East French Alps): initial study. Landslides, v.14(1), p.155-170. doi: 10.1007/s10346-016-0705-7
  42. Panek, T., Brazdil, R., Klimes, J., Smolkova, V., Hradecky, J. and Zahradnicek, P. (2011) Rainfall-induced landslide event of May 2010 in the eastern part of the Czech Republic. Landslides, v.8(4), p.507-516. doi: 10.1007/s10346-011-0268-6
  43. Patella, D. (1997a) Introduction to ground surface self-potential tomography [Link]. Geophys. Prospect., v.45(4), p.653-681. doi: 10.1046/j.1365-2478.1997.430277.x
  44. Patella, D. (1997b) Self-potential global tomography including topographic effects [Link]. Geophys. Prospect., v.45(5), p.843-863. doi: 10.1046/j.1365-2478.1997.570296.x
  45. Patella, D. (1998) Self-potential global tomography including topographic effects (vol 45, pg 843, 1997). Geophys. Prospect., v.46(1), p.103-103. doi: 10.1046/j.1365-2478.1997.570296.x
  46. Pazzi, V., Morelli, S. and Fanti, R. (2019) A review of the advantages and limitations of geophysical investigations in landslide studies. Int. J. Geophys., 2019. doi: 10.1155/2019/2983087
  47. Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S., Rizzo, E. and Sdao, F. (2004) High-resolution electrical imaging of the Varco d'Izzo earthflow (southern Italy). J. Appl. Geophy., v.56(1), p.17-29. doi: 10.1016/j.jappgeo.2004.03.004
  48. Roch, K.H., Chwatal, W. and Bruckl, E. (2006) Potentials of monitoring rock fall hazards by GPR: considering as example the results of Salzburg. Landslides, v.3(2), p.87-94. doi: 10.1007/s10346-005-0026-8
  49. Santoso, B. and Hasanah, M.U. (2019, August) Landslide investigation using self potential method and electrical resistivity tomography (Pasanggrahan, South Sumedang, Indonesia). IOP Conf. Ser. Earth. Environ. Sci., (Vol. 311, No. 1, 012068). IOP Publishing. doi: 10.1088/1755-1315/311/1/012068
  50. Sass, O. and Krautblatter, M. (2007) Debris flow-dominated and rockfall-dominated talus slopes: Genetic models derived from GPR measurements. Geomorphology, v.86(1-2), p.176-192. doi: 10.1016/j.geomorph.2006.08.012
  51. Sass, O., Bell, R. and Glade, T. (2008) Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Oschingen landslide, Swabian Alb (Germany). Geomorphology, v.93(1-2), p.89-103. doi: 10.1016/j.geomorph.2006.12.019
  52. Schmugge, T.J., Jackson, T.J. and McKim, H.L. (1980) Survey of methods for soil moisture determination. Water Resour. Res., v.16(6), p.961-979. doi: 10.1029/WR016i006p00961
  53. Schmugge, T.J. (1980) Effect of texture on microwave emission from soils: IEEE Geosci. Remote Sens., GE-18, p.353-361. doi: 10.1109/TGRS.1980.350313
  54. Soderblom, R. (1969) Salt in Swedish clays and its importance for quick clay formation. Results from some field and laboratory studies.
  55. Song, S.Y. and Nam, M.J. (2018) A Technical Review on Principles and Practices of Self-potential Method Based on Streaming Potential. Geophys. Geophys-Explor., v.21(4), p.231-243. doi: 10.7582/GGE.2018.21.4.231
  56. Song, S.Y., Cho, A., Kang, P.K. and Nam, M.J. (2021) A Review on Past Cases of Self-potential Surveys for Dikes and Embankments Considering Streaming Potential. J. of Soil and Groundw. Environ., v.26(6), p.1-17. doi: 10.7857/JSGE.2021.26.6.001
  57. Stead, D. and Wolter, A. (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J. Struct. Geol., v.74, p.1-23. doi: 10.1016/j.jsg.2015.02.002
  58. Sujitapan, C., Kendall, M., Whiteley, J.S., Chambers, J.E. and Uhlemann, S. (2019) Landslide investigation and monitoring using self-potential methods. In 25th EAGE (Vol. 2019, No. 1, p. 1-5). doi: 10.3997/2214-4609.201902428
  59. Taborik, P., Lenart, J., Blecha, V., Vilhelm, J. and Tursky, O. (2017) Geophysical anatomy of counter-slope scarps in sedimentary flysch rocks (Outer Western Carpathians). Geomorphology, v.276, p.59-70. doi: 10.1016/j.geomorph.2016.09.038
  60. Travelletti, J., Demand, J., Jaboyedoff, M. and Marillier, F. (2010) Mass movement characterization using a reflexion and refraction seismic survey with the sloping local base level concept. Geomorphology, v.116(1-2), p.1-10. doi: 10.1016%2Fj.geomorph.2009.10.006 https://doi.org/10.1016%2Fj.geomorph.2009.10.006
  61. Varnes, D.J. (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, Washington, DC., p.11-33.
  62. Viero, A., Galgaro, A., Morelli, G., Breda, A. and Francese, R.G. (2015) Investigations on the structural setting of a landslide-prone slope by means of three-dimensional electrical resistivity tomography. Nat. Hazards, v.78(2), p.1369-1385. doi: 10.1007/s11069-015-1777-8
  63. Whiteley, J.S., Chambers, J.E., Uhlemann, S., Boyd, J., Cimpoiasu, M.O., Holmes, J.L., Inauen, C.M., Watlet, A., Hawley-Sibbett, L.R., Sufitapan, C., Swift, R.T. and Kendall, J.M. (2020) Landslide monitoring using seismic refraction tomography-The importance of incorporating topographic variations. Eng. Geol., v.268, p.105-525. doi: 10.1016/j.enggeo.2020.105525
  64. Zakaria, M.T., Mohd Muztaza, N., Zabidi, H., Salleh, A.N., Mahmud, N., Samsudin, N., Rosli, F.N., Olugbenga, A.T. and Jia, T.Y. (2021) 2-D Cross-Plot Model Analysis Using Integrated Geophysical Methods for Landslides Assessment. Appl. Sci., v.11(2), p.747. doi: 10.3390/app11020747
  65. Kim, W.Y. and Chae, B.G. (2009) Characteristics of Rainfall, Geology and Failure Geometry of the Landslide Areas on Natural Terrains, Korea. KSEG, v.19(3), p.331-344.
  66. Shin, H.O., Kim, M.I. and Yoon, W.J. (2018). Application of geophysical exploration technique to the identification of active weak zones in large scale mountainous region. Geophysics and Geophysical Exploration, v.21(3), p.162-170. doi: 10.7582/GGE.2018.21.3.162
  67. Lee, M.S., Park, J.H. and Park, Y. (2019) Analysis of Characteristics using Geotechnical Investigation on the Slow-moving Landslides in the Pohang-si Area. J. Korean Soc. For. Sci., v.108(2), p.233-240. doi: 10.14578/jkfs.2019.108.2.233
  68. Cho, S.E. (2018) Probabilistic Stability Analysis of Unsaturated Soil Slope under Rainfall Infiltration. J. of the Korean Geotech. Soc., v.34(5), p.37-51. doi: 10.7843/kgs.2018.34.5.37