DOI QR코드

DOI QR Code

Estimation of Groundwater Quality and Background Level in Boseong Area, South Korea

보성지역 지하수의 배경 수질 및 오염 특성 분석

  • Moon, Sang-Ho (Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Jinwon (Department of Environmental Engineering, Kunsan National University) ;
  • Kim, Kangjoo (Department of Environmental Engineering, Kunsan National University) ;
  • Ju, Jeong-woung (Geogreen21)
  • 문상호 (한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터) ;
  • 이진원 (군산대학교 환경공학과) ;
  • 김강주 (군산대학교 환경공학과) ;
  • 주정웅 ((주)지오그린21)
  • Received : 2022.01.13
  • Accepted : 2022.02.21
  • Published : 2022.02.28

Abstract

The groundwater quality in Boseong area was characterized and their background concentrations were estimated based on the chemical data obtained from 200 groundwater samples collected during July 2019. Groundwater data were classified into two groups: Group 1 with NO3- < 44.3 mg/L and Group 2 with NO3- ≥ 44.3 mg/L. Results of t-tests indicate that groundwaters in Group 2 are significantly higher in water temperature and Ca concentration and significantly lower in F, As, Pb and Zn concentrations. It was also revealed that groundwaters Group 2 are closely linked to low pH, alkalinity, NH4, NO2, F, As, Fe, Mn, Pb and Zn levels, and high EC and water temperature. Background concentrations were estimated using the the BRIDGE method. The results depicted the higher levels in NO3, NH4, PO4, As, Fe, Mn than the ones estimated by MOE and KECO (2018; 2019), which were prepared for the three catchment units in Boseong. The results of this study are believed to have more reliability because more data were used.

2019년 7월에 얻어진 200개의 지하수 수질자료를 활용하여 보성지역 지하수의 수질 특성을 평가하고, 배경 수질을 도출하였다. 지하수는 질산성질소 농도를 기준으로 Group 1(NO3- < 44.3 mg/L)과 Group 2(NO3- ≥ 44.3 mg/L)로 구분하였다. t-test 결과, Group 2는 Group 1에 비해 유의성 있게 수온과 Ca 농도가 높았고, F, As, Pb, Zn 등의 농도는 낮게 나타났다. 질산염 농도가 높은 경우에는 낮은 pH, 알칼리도, NH4, NO2, F, As, Fe, Mn, Pb, Zn 등의 농도를 보였으며, EC 및 수온은 높아지는 경향을 보였다. 한편, 배경농도는 BRIDGE 방법으로 설정하였다. 본 연구에서 설정된 NO3, NH4, PO4, As, Fe, Mn 항목들에 대한 배경농도 값들은 기존의 환경부 보고서(MOE and KECO, 2018; 2019)에 제시된 중권역별 배경농도 산정 결과보다는 다소 높게 설정되었다. 본 연구에 이용된 수질자료의 수가 훨씬 많다는 점을 감안하면, 본 연구에서 산출된 배경수질 자료의 신뢰성이 더 높은 것이라 판단된다.

Keywords

Acknowledgement

이 연구는 국가과학기술연구회 창의형 융합연구사업(CAP-17-05-KIGAM)의 지원을 받아 수행되었습니다. 이 논문은 환경부의 "보성지역 통합 지하수 기초조사" 보고서 및 부록에 수록된 자료를 주로 활용하였으며, 이 논문을 심사하여 주신 익명의 심사위원들께 감사의 말씀을 드립니다.

References

  1. An, Y.-J, Nam, S.-H. and Jeong, S.-W. (2014) Establishment of non-drinking groundwater quality standards: general contamination substances. J. Soil Groundw. Environ., v.19, p.24-29. doi: 10.7857/JSGE.2014.19.6.024
  2. An, H., Jeen, S.-W., Lee, S.J., Hyun, Y., Yoon, H. and Kim, R.-H. (2015) Suggestion of groundwater quality management framework using threshold values and trend analysis. J. Soil Groundw. Environ., v.20, p.112-120. doi: 10.7857/JSGE.2015.20.7.112
  3. Appelo, C.A.J. and Postma, D. (2005) Geochemistry, Groundwater and Pollution (2nd ed.). Rotterdam, Netherlands, A.A. Balkema. doi: 10.1201/9781439833544
  4. BRIDGE project (2006) D10: Impact of Hydrogeological Conditions on Pollutant Behaviour in Groundwater and Related Ecosystems. Volume 1. Available online: http://hydrologie.org/BIB/Publ_UNESCO/SOG_BRIDGE/Deliverables/WP2/D10_VOL-1.pdf.
  5. "BRIDGE". Available online: http://nfp-at.eionet.europa.eu/Publicirc/eionet-circle/bridge/library?l=/deliverables/d22_final_reppdf/_EN_1.0_&a=d
  6. Cha, S. and Seo, Y.G. (2020) Groundwater quality in Gyeongnam regeion using groundwater quality monitoring data: Characteristics according to depth and geological features by background water quality exclusive monitoring network. Clean Technol., v.26, p.39-54. doi: 10.7464/ksct.2020.26.1.39
  7. EC(European Commission) (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy.
  8. EC(European Commission) (2006) Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration.
  9. EC(European Commission) (2008) Directive 2008/32/EC of the European Parliament and of the Council of 11 March 2008 amending Directive 2000/60/EC establishing a framework for community action in the field of water policy, as regards the implementing powers conferred on the commission.
  10. EC(European Commission) (2009) Common implementation strategy for the water framework directive (2000/60/EC) Guidance document No. 18 Guidance on groundwater status and trend assessment.
  11. EPA(Environmental Protection Agency), Ireland (2010) Methodology for establishing groundwater threshold values and the assessment of chemical and quantitative status of groundwater, including an assessment of pollution trends and trend reversal.
  12. Ha, Q.K., Choi, S., Phan, N.L., Kim, K., Phan, C.N., Nguyen, V.K. and Ko, K.S. (2019) Occurrence of metal-rich acidic groundwaters around the Mekong Delta (Vietnam): A phenomenon linked to well installation. Science of the Total Environment, v.654, p.1100-1109. doi: 10.1016/j.scitotenv.2018.11.200
  13. Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M., Keon-Blute, N., Yu, W., Ashraf Ali, M., Jay, J., Beckie, R., Niedan, V., Brabander, D.J., Oates, P.M., Ashfaque, K.N., Islam, S., Hemond, H.F. and Ahmed, M.F. (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science, v.298, p.1602-1606. doi: 10.1126/science.1076978
  14. Hinsby, K. and Condesso de Melo, M.T. (2006) Application and evaluation of a proposed methodology for derivation of groundwater threshold values-a case study summary report. Report to the EU Project.
  15. Hinsby, K., Condesso de Melo, M. and Dahl, M. (2008) European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Science of the Total Environment, v.401, p.1-20. doi: 10.1016/j.scitotenv.2008.03.018
  16. KEI(Korea Environment Institute) (2013) A study on the determination of background levels in groundwater and improvement of groundwater quality standards (I).
  17. Kim, K. (2002) Plagioclase weathering in groundwater system of a sandy, silicate aquifer. Hydrological Processes, v.16, p.1793-1806. doi: 10.1002/hyp.1081
  18. Kim, K. (2003) Long term disturbance of groundwater chemistry following well installation. Ground Water, v.41, p.780-789. doi: 10.1111/j.1745-6584.2003.tb02419.x
  19. Kim, K., Hamm, S.-Y., Kim, R.H., and Kim, H. (2018) A review on alkalinity analysis methods suitable for Korean groundwater. Econ. Environ. Geol., v.51, p.509-520. doi: 10.9719/EEG.2018.51.6.509
  20. Kim, K., Kim, H.J., Choi, B.Y., Kim, S.H., Park, K.H., Park, E., Koh, D.C. and Yun, S.T. (2008) Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field. Applied Geochemistry, v.23, p.44-57. doi: 10.1016/j.apgeochem.2007.09.004
  21. Kim, S.H., Kim, K., Ko, K.S., Kim, Y., Lee, K.S. (2012) Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere, v.87, p.851-856. doi: 10.1016/j.chemosphere.2012.01.025
  22. Kim, K.-H., Yun, S.-T., Kim, H.-K. and Kim, J.-W. (2015) Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches. J. Geochem. Explor., v.148, p.196-205. doi: 10.1016/j.gexplo.2014.10.001
  23. Mendizabal, I., Baggelaar, P.K. and Stuyfzand, P.J. (2012) Hydrochemical trends for public supply well fields in the Netherlands (1898-2008), natrual backgrounds and upscaling to groundwater bodies. J. Hydrol., v.450-451, p.279-292. doi: 10.1016/j.jhydrol.2012.04.050
  24. MOE(Ministry of Environment) (2013) Establishment of groundwater quality monitoring networks and groundwater monitoring plan.
  25. MOE(Ministry of Environment) and KECO(Korea Environment Corporation) (2018) Report for 2018 basic establishment of groundwater quality control: Western south sea area of Seomjingam River. 132p.
  26. MOE(Ministry of Environment) and KECO(Korea Environment Corporation) (2019) Final report for 2019 basic establishment of groundwater quality control. 330p.
  27. MOE(Ministry of Environment) and KIGAM(Korea Institute of Geoscience and Mineral Resources) (2020) Report for basic research of groundwater of Boseong area. p.11-5.
  28. MOLIT(Ministry of Land, Infrastructure and Transport) (2017) Amending plan for Basic Groundwater Management Plan (2017-2026). p.168.
  29. Muller, D., Blum, A., Hart, A., et al. (2006) Final proposal for a methodology to set up groundwater threshold values in Europe. Report to the EU Project "BRIDGE". Available online: https://hydrologie.org/BIB/Publ_UNESCO/SOG_BRIDGE/Deliverables/WP3/D18.pdf
  30. Nam, S.-H., Lee, W.-M., Jeong, S.-W., Kim, H.-J., Kim, H.-K., Kim, T.-S. and An, Y.-J. (2013) Comparative study of groundwater threshold values in European Commission and members states for improving management of groundwater quality in Korea. J. Soil Groundw. Environ., v.18, p.23-32. doi: 10.7857/JSGE.2013.18.3.023
  31. Nieto, P., Custodio, E. and Manzana, M. (2005) Baseline groundwater quality: a European approach. Environmental Science & Policy, v.8, p.399-409. doi: 10.1016/j.envsci.2005.04.004
  32. Wendland, F., Berthold, G., Blum, A., et al. (2008) Derivation of natural background levels and threshold values for groundwater bodies in the Upper Rhine Valley (France, Switzerland and Germany). Desalination, v.226, p.160-168. doi: 10.1016/j.desal.2007.01.240
  33. Yea, Y.-D., Seo, Y.-G., Kim, R.-H., Cho,D.-J., Kim, K.-S. and Cho, W.-S. (2014) A study on estimating background concentration of groundwater for water quality assessment in non-water supply district. J. Korean Soc. Water Wastewater, v.28, p.345-358. doi: 10.11001/jksww.2014.28.3.345