DOI QR코드

DOI QR Code

The Aurora Kinase Inhibitor CYC116 Promotes the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells

  • Sijia, Ji (School of Life Science and Technology, ShanghaiTech University) ;
  • Wanzhi, Tu (School of Life Science and Technology, ShanghaiTech University) ;
  • Chenwen, Huang (State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences) ;
  • Ziyang, Chen (State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences) ;
  • Xinyue, Ren (State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences) ;
  • Bingqing, He (School of Life Science and Technology, ShanghaiTech University) ;
  • Xiaoyan, Ding (Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences) ;
  • Yuelei, Chen (Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences) ;
  • Xin, Xie (School of Life Science and Technology, ShanghaiTech University)
  • 투고 : 2022.05.06
  • 심사 : 2022.09.20
  • 발행 : 2022.12.31

초록

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in applications such as regenerative medicine, cardiac disease modeling, and in vitro drug evaluation. However, hPSC-CMs are immature, which limits their applications. During development, the maturation of CMs is accompanied by a decline in their proliferative capacity. This phenomenon suggests that regulating the cell cycle may facilitate the maturation of hPSC-CMs. Aurora kinases are essential kinases that regulate the cell cycle, the role of which is not well studied in hPSC-CM maturation. Here, we demonstrate that CYC116, an inhibitor of Aurora kinases, significantly promotes the maturation of CMs derived from both human embryonic stem cells (H1 and H9) and iPSCs (induced PSCs) (UC013), resulting in increased expression of genes related to cardiomyocyte function, better organization of the sarcomere, increased sarcomere length, increased number of mitochondria, and enhanced physiological function of the cells. In addition, a number of other Aurora kinase inhibitors have also been found to promote the maturation of hPSC-CMs. Our data suggest that blocking aurora kinase activity and regulating cell cycle progression may promote the maturation of hPSC-CMs.

키워드

과제정보

This work was supported by grants from the Chinese Academy of Sciences (XDA16010202), the Ministry of Science and Technology of China (2017YFA0104002), and the National Natural Science Foundation of China (82121005, 81730099).

참고문헌

  1. Angst, B.D., Khan, L.U., Severs, N.J., Whitely, K., Rothery, S., Thompson, R.P., Magee, A.I., and Gourdie, R.G. (1997). Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ. Res. 80, 88-94. https://doi.org/10.1161/01.RES.80.1.88
  2. Barth, E., Stammler, G., Speiser, B., and Schaper, J. (1992). Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J. Mol. Cell. Cardiol. 24, 669-681. https://doi.org/10.1016/0022-2828(92)93381-S
  3. Bergmann, O., Zdunek, S., Felker, A., Salehpour, M., Alkass, K., Bernard, S., Sjostrom, S.L., Szewczykowska, M., Jackowska, T., Dos Remedios, C., et al. (2015). Dynamics of cell generation and turnover in the human heart. Cell 161, 1566-1575. https://doi.org/10.1016/j.cell.2015.05.026
  4. Bhattacharya, S., Burridge, P.W., Kropp, E.M., Chuppa, S.L., Kwok, W.M., Wu, J.C., Boheler, K.R., and Gundry, R.L. (2014). High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J. Vis. Exp. 91, 52010.
  5. Borisa, A.C. and Bhatt, H.G. (2017). A comprehensive review on Aurora kinase: small molecule inhibitors and clinical trial studies. Eur. J. Med. Chem. 140, 1-19. https://doi.org/10.1016/j.ejmech.2017.08.045
  6. Burridge, P.W., Matsa, E., Shukla, P., Lin, Z.C., Churko, J.M., Ebert, A.D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N.M., et al. (2014). Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855-860. https://doi.org/10.1038/nmeth.2999
  7. Cao, F., Wagner, R.A., Wilson, K.D., Xie, X., Fu, J.D., Drukker, M., Lee, A., Li, R.A., Gambhir, S.S., Weissman, I.L., et al. (2008). Transcriptional and functional profiling of Human pluripotent stem cell-derived cardiomyocytes. PLoS One 3, e3474.
  8. Christoffels, V.M., Habets, P.E., Franco, D., Campione, M., de Jong, F., Lamers, W.H., Bao, Z.Z., Palmer, S., Biben, C., Harvey, R.P., et al. (2000). Chamber formation and morphogenesis in the developing mammalian heart. Dev. Biol. 223, 266-278. https://doi.org/10.1006/dbio.2000.9753
  9. Du, J., Yan, L., Torres, R., Gong, X., Bian, H., Marugan, C., Boehnke, K., Baquero, C., Hui, Y.H., Chapman, S.C., et al. (2019). Aurora A-selective inhibitor LY3295668 leads to dominant mitotic arrest, apoptosis in cancer cells, and shows potent preclinical antitumor efficacy. Mol. Cancer Ther. 18, 2207-2219. https://doi.org/10.1158/1535-7163.mct-18-0529
  10. Feric, N.T. and Radisic, M. (2016). Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110-134. https://doi.org/10.1016/j.addr.2015.04.019
  11. Garbern, J.C., Helman, A., Sereda, R., Sarikhani, M., Ahmed, A., Escalante, G.O., Ogurlu, R., Kim, S.L., Zimmerman, J.F., Cho, A., et al. (2020). Inhibition of mTOR signaling enhances maturation of cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence. Circulation 141, 285-300. https://doi.org/10.1161/circulationaha.119.044205
  12. Goffart, S., von Kleist-Retzow, J.C., and Wiesner, R.J. (2004). Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc. Res. 64, 198-207. https://doi.org/10.1016/j.cardiores.2004.06.030
  13. Gomez-Garcia, M.J., Quesnel, E., Al-Attar, R., Laskary, A.R., and Laflamme, M.A. (2021). Maturation of human pluripotent stem cell derived cardiomyocytes in vitro and in vivo. Semin. Cell Dev. Biol. 118, 163-171. https://doi.org/10.1016/j.semcdb.2021.05.022
  14. Hu, D., Linders, A., Yamak, A., Correia, C., Kijlstra, J.D., Garakani, A., Xiao, L., Milan, D.J., van der Meer, P., Serra, M., et al. (2018). Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1alpha and LDHA. Circ. Res. 123, 1066-1079. https://doi.org/10.1161/CIRCRESAHA.118.313249
  15. Jiang, Y., Park, P., Hong, S.M., and Ban, K. (2018). Maturation of cardiomyocytes derived from human pluripotent stem cells: current strategies and limitations. Mol. Cells 41, 613-621. https://doi.org/10.14348/MOLCELLS.2018.0143
  16. Kadota, S., Pabon, L., Reinecke, H., and Murry, C.E. (2017). In vivo maturation of human induced pluripotent stem cell-derived cardiomyocytes in neonatal and adult rat hearts. Stem Cell Reports 8, 278-289. https://doi.org/10.1016/j.stemcr.2016.10.009
  17. Kamakura, T., Makiyama, T., Sasaki, K., Yoshida, Y., Wuriyanghai, Y., Chen, J., Hattori, T., Ohno, S., Kita, T., Horie, M., et al. (2013). Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ. J. 77, 1307-1314. https://doi.org/10.1253/circj.CJ-12-0987
  18. Kolanowski, T.J., Antos, C.L., and Guan, K. (2017). Making human cardiomyocytes up to date: derivation, maturation state and perspectives. Int. J. Cardiol. 241, 379-386. https://doi.org/10.1016/j.ijcard.2017.03.099
  19. Liang, P., Lan, F., Lee, A.S., Gong, T., Sanchez-Freire, V., Wang, Y., Diecke, S., Sallam, K., Knowles, J.W., Wang, P.J., et al. (2013). Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127, 1677-1691. https://doi.org/10.1161/CIRCULATIONAHA.113.001883
  20. Liu, Y., Bai, H., Guo, F., Thai, P.N., Luo, X., Zhang, P., Yang, C., Feng, X., Zhu, D., Guo, J., et al. (2020). PPARGC1A activator ZLN005 promotes maturation of cardiomyocytes derived fromHuman pluripotent stem cells. Aging (Albany N.Y.) 12, 7411-7430. https://doi.org/10.18632/aging.103088
  21. Lundy, S.D., Zhu, W.Z., Regnier, M., and Laflamme, M.A. (2013). Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 1991-2002. https://doi.org/10.1089/scd.2012.0490
  22. Miao, S., Zhao, D., Wang, X., Ni, X., Fang, X., Yu, M., Ye, L., Yang, J., Wu, H., Han, X., et al. (2020). Retinoic acid promotes metabolic maturation of human embryonic stem cell-derived cardiomyocytes. Theranostics 10, 9686-9701. https://doi.org/10.7150/thno.44146
  23. Mills, R.J., Titmarsh, D.M., Koenig, X., Parker, B.L., Ryall, J.G., Quaife-Ryan, G.A., Voges, H.K., Hodson, M.P., Ferguson, C., Drowley, L., et al. (2017). Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc. Natl. Acad. Sci. U. S. A. 114, E8372-E8381.
  24. Mollova, M., Bersell, K., Walsh, S., Savla, J., Das, L.T., Park, S.Y., Silberstein, L.E., Dos Remedios, C.G., Graham, D., Colan, S., et al. (2013). Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. U. S. A. 110, 1446-1451. https://doi.org/10.1073/pnas.1214608110
  25. Moretti, A., Bellin, M., Welling, A., Jung, C.B., Lam, J.T., Bott-Flugel, L., Dorn, T., Goedel, A., Hohnke, C., Hofmann, F., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397-1409. https://doi.org/10.1056/NEJMoa0908679
  26. Noronha, S., Alt, L.A.C., Scimeca, T.E., Zarou, O., Obrzut, J., Zanotti, B., Hayward, E.A., Pillai, A., Mathur, S., Rojas, J., et al. (2018). Preclinical evaluation of the Aurora kinase inhibitors AMG 900, AZD1152-HQPA, and MK-5108 on SW-872 and 93T449 human liposarcoma cells. In Vitro Cell. Dev. Biol. Anim. 54, 71-84. https://doi.org/10.1007/s11626-017-0208-4
  27. Parikh, S.S., Blackwell, D.J., Gomez-Hurtado, N., Frisk, M., Wang, L., Kim, K., Dahl, C.P., Fiane, A., Tonnessen, T., Kryshtal, D.O., et al. (2017). Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121, 1323-1330. https://doi.org/10.1161/CIRCRESAHA.117.311920
  28. Ponnusamy, M., Li, P.F., and Wang, K. (2017). Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cell. Mol. Life Sci. 74, 1019-1034. https://doi.org/10.1007/s00018-016-2375-y
  29. Porrello, E.R., Mahmoud, A.I., Simpson, E., Hill, J.A., Richardson, J.A., Olson, E.N., and Sadek, H.A. (2011). Transient regenerative potential of the neonatal mouse heart. Science 331, 1078-1080. https://doi.org/10.1126/science.1200708
  30. Robertson, C., Tran, D.D., and George, S.C. (2013). Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31, 829-837. https://doi.org/10.1002/stem.1331
  31. Rog-Zielinska, E.A., Craig, M.A., Manning, J.R., Richardson, R.V., Gowans, G.J., Dunbar, D.R., Gharbi, K., Kenyon, C.J., Holmes, M.C., Hardie, D.G., et al. (2015). Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1alpha. Cell Death Differ. 22, 1106-1116. https://doi.org/10.1038/cdd.2014.181
  32. Ronaldson-Bouchard, K., Ma, S.P., Yeager, K., Chen, T., Song, L., Sirabella, D., Morikawa, K., Teles, D., Yazawa, M., and Vunjak-Novakovic, G. (2018). Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239-243. https://doi.org/10.1038/s41586-018-0016-3
  33. Tang, A., Gao, K., Chu, L., Zhang, R., Yang, J., and Zheng, J. (2017). Aurora kinases: novel therapy targets in cancers. Oncotarget 8, 23937-23954. https://doi.org/10.18632/oncotarget.14893
  34. Tertoolen, L.G.J., Braam, S.R., van Meer, B.J., Passier, R., and Mummery, C.L. (2018). Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes. Biochem. Biophys. Res. Commun. 497, 1135-1141. https://doi.org/10.1016/j.bbrc.2017.01.151
  35. Tseng, T.C., Chen, S.H., Hsu, Y.P., and Tang, T.K. (1998). Protein kinase profile of sperm and eggs: cloning and characterization of two novel testis-specific protein kinases (AIE1, AIE2) related to yeast and fly chromosome segregation regulators. DNA Cell Biol. 17, 823-833. https://doi.org/10.1089/dna.1998.17.823
  36. Xu, X.Q., Soo, S.Y., Sun, W., and Zweigerdt, R. (2009). Global expression profile of highly enriched cardiomyocytes derived from Human pluripotent stem cells. Stem Cells 27, 2163-2174. https://doi.org/10.1002/stem.166
  37. Xue, Y., Cai, X., Wang, L., Liao, B., Zhang, H., Shan, Y., Chen, Q., Zhou, T., Li, X., Hou, J., et al. (2013). Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells. PLoS One 8, e70573.
  38. Yang, X., Pabon, L., and Murry, C.E. (2014). Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511-523. https://doi.org/10.1161/CIRCRESAHA.114.300558
  39. Yang, X., Rodriguez, M., Pabon, L., Fischer, K.A., Reinecke, H., Regnier, M., Sniadecki, N.J., Ruohola-Baker, H., and Murry, C.E. (2014). Tri-iodo-lthyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J. Mol. Cell. Cardiol. 72, 296-304. https://doi.org/10.1016/j.yjmcc.2014.04.005
  40. Yang, X., Rodriguez, M.L., Leonard, A., Sun, L., Fischer, K.A., Wang, Y., Ritterhoff, J., Zhao, L., Kolwicz, S.C., Jr., Pabon, L., et al. (2019). Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports 13, 657-668. https://doi.org/10.1016/j.stemcr.2019.08.013
  41. Yu, X., Liang, Q., Liu, W., Zhou, L., Li, W., and Liu, H. (2017). Deguelin, an Aurora B kinase inhibitor, exhibits potent anti-tumor effect in human esophageal squamous cell carcinoma. EBioMedicine 26, 100-111. https://doi.org/10.1016/j.ebiom.2017.10.030