Acknowledgement
We thank all members of the Lee lab for their discussions and comments at various stages. This work was supported by the grants NRF-2018R1A5A1023599 and NRF2021R1A2C3006061 to J.-Y.L. from the National Research Foundation of Korea. S.D. was supported by the Brain Korea 21 Four Program.
References
- Bouche, N., Yellin, A., Snedden, W.A., and Fromm, H. (2005). Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56, 435-466. https://doi.org/10.1146/annurev.arplant.56.032604.144224
- Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., and He, P. (2013). Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 4, 2530.
- Dhar, S., Kim, H., Segonzac, C., and Lee, J.Y. (2021). The danger-associated peptide PEP1 directs cellular reprogramming in the Arabidopsis root vascular system. Mol. Cells 44, 830-842. https://doi.org/10.14348/molcells.2021.0203
- Figueroa-Macias, J.P., Garcia, Y.C., Nunez, M., Diaz, K., Olea, A.F., and Espinoza, L. (2021). Plant growth-defense trade-offs: molecular processes leading to physiological changes. Int. J. Mol. Sci. 22, 693.
- Gangappa, S.N., Berriri, S., and Kumar, S.V. (2017). PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Curr. Biol. 27, 243-249. https://doi.org/10.1016/j.cub.2016.11.012
- Huang, S., Zhu, S., Kumar, P., and MacMicking, J.D. (2021). A phaseseparatednuclear GBPL circuit controls immunity in plants. Nature 594, 424-429. https://doi.org/10.1038/s41586-021-03572-6
- Huot, B., Castroverde, C.D.M., Velasquez, A.C., Hubbard, E., Pulman, J.A., Yao, J., Childs, K.L., Tsuda, K., Montgomery, B.L., and He, S.Y. (2017). Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat. Commun. 8, 1808.
- Huot, B., Yao, J., Montgomery, B.L., and He, S.Y. (2014). Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 1267-1287. https://doi.org/10.1093/mp/ssu049
- Jing, Y., Zheng, X., Zhang, D., Shen, N., Wang, Y., Yang, L., Fu, A., Shi, J., Zhao, F., Lan, W., et al. (2019). Danger-associated peptides interact with PIN-dependent local auxin distribution to inhibit root growth in Arabidopsis. Plant Cell 31, 1767-1787. https://doi.org/10.1105/tpc.18.00757
- Kim, J.H., Castroverde, C.D.M., Huang, S., Li, C., Hilleary, R., Seroka, A., Sohrabi, R., Medina-Yerena, D., Huot, B., Wang, J., et al. (2022). Increasing the resilience of plant immunity to a warming climate. Nature 607, 339-344. https://doi.org/10.1038/s41586-022-04902-y
- Kwon, C., Lee, J.H., and Yun, H.S. (2020). SNAREs in plant biotic and abiotic stress responses. Mol. Cells 43, 501-508. https://doi.org/10.14348/molcells.2020.0007
- Malamy, J., Hennig, J., and Klessig, D.F. (1992). Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4, 359-366. https://doi.org/10.1105/tpc.4.3.359
- Neuser, J., Metzen, C.C., Dreyer, B.H., Feulner, C., van Dongen, J.T., Schmidt, R.R., and Schippers, J.H. (2019). HBI1 mediates the trade-off between growth and immunity through its impact on apoplastic ROS homeostasis. Cell Rep. 28, 1670-1678.e3. https://doi.org/10.1016/j.celrep.2019.07.029
- Okada, K., Kubota, Y., Hirase, T., Otani, K., Goh, T., Hiruma, K., and Saijo, Y. (2021). Uncoupling root hair formation and defence activation from growth inhibition in response to damage-associated Pep peptides in Arabidopsis thaliana. New Phytol. 229, 2844-2858. https://doi.org/10.1111/nph.17064
- Poncini, L., Wyrsch, I., Denervaud Tendon, V., Vorley, T., Boller, T., Geldner, N., Metraux, J.P., and Lehmann, S. (2017). In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS One 12, e0185808.
- Wang, L., Tsuda, K., Sato, M., Cohen, J.D., Katagiri, F., and Glazebrook, J. (2009). Arabidopsis CaM binding protein CBP60g contributes to MAMPinduced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog. 5, e1000301.
- Wang, L., Tsuda, K., Truman, W., Sato, M., Nguyen, L.V., Katagiri, F., and Glazebrook, J. (2011). CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J. 67, 1029-1041. https://doi.org/10.1111/j.1365-313X.2011.04655.x
- Won, K.H. and Kim, H. (2020). Functions of the plant Qbc SNARE SNAP25 in cytokinesis and biotic and abiotic stress responses. Mol. Cells 43, 313-322. https://doi.org/10.14348/molcells.2020.2245
- Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., and Dong, X. (2017). uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545, 491-494. https://doi.org/10.1038/nature22372
- Zhu, Y., Qian, W., and Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog. 6, e1000844.