DOI QR코드

DOI QR Code

Sirtinol Supresses Trophozoites Proliferation and Encystation of Acanthamoeba via Inhibition of Sirtuin Family Protein

  • Joo, So-Young (Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University) ;
  • Aung, Ja Moon (Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University) ;
  • Shin, Minsang (Department of Microbiology, School of Medicine, Kyungpook National University) ;
  • Moon, Eun-Kyung (Department of Medical Zoology, Kyung Hee University School of Medicine) ;
  • Kong, Hyun-Hee (Department of Parasitology, Dong-A University College of Medicine) ;
  • Goo, Youn-Kyoung (Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University) ;
  • Chung, Dong-Il (Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University) ;
  • Hong, Yeonchul (Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University)
  • Received : 2021.12.08
  • Accepted : 2022.01.27
  • Published : 2022.02.28

Abstract

The encystation of Acanthamoeba leads to the development of metabolically inactive and dormant cysts from vegetative trophozoites under unfavorable conditions. These cysts are highly resistant to anti-Acanthamoeba drugs and biocides. Therefore, the inhibition of encystation would be more effective in treating Acanthamoeba infection. In our previous study, a sirtuin family protein-Acanthamoeba silent-information regulator 2-like protein (AcSir2)-was identified, and its expression was discovered to be critical for Acanthamoeba castellanii proliferation and encystation. In this study, to develop Acanthamoeba sirtuin inhibitors, we examine the effects of sirtinol, a sirtuin inhibitor, on trophozoite growth and encystation. Sirtinol inhibited A. castellanii trophozoites proliferation (IC50=61.24 µM). The encystation rate of cells treated with sirtinol significantly decreased to 39.8% (200 µM sirtinol) after 24 hr of incubation compared to controls. In AcSir2-overexpressing cells, the transcriptional level of cyst-specific cysteine protease (CSCP), an Acanthamoeba cysteine protease involved in the encysting process, was 11.6- and 88.6-fold higher at 48 and 72 hr after induction of encystation compared to control. However, sirtinol suppresses CSCP transcription, resulting that the undegraded organelles and large molecules remained in sirtinol-treated cells during encystation. These results indicated that sirtinol sufficiently inhibited trophozoite proliferation and encystation, and can be used to treat Acanthamoeba infections.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2019R1I1A1A01061647).

References

  1. Khan NA. Acanthamoeba: biology and pathogenesis. 2nd ed. Norfolk, U.K. Caister Academic Press. 2015.
  2. Walochnik J, Duchene M. Molecular parasitology: protozoan parasites and their molecules. Wien. Springer. 2016.
  3. Lloyd D, Turner NA, Khunkitti W, Hann AC, Furr JR, Russell AD. Encystation in Acanthamoeba castellanii: development of biocide resistance. J Eukaryot Microbiol 2001; 48: 11-16. http://doi.org/10.1111/j.1550-7408.2001.tb00410.x
  4. Tomlinson G, Jones EA. Isolation of cellulose from the cyst wall of a soil amoeba. Biochim Biophys Acta 1962; 63: 194-200. http://doi.org/10.1016/0006-3002(62)90353-0
  5. Weisman RA. Differentiation in Acanthamoeba castellanii. Annu Rev Microbiol 1976; 30: 189-219. http://doi.org/10.1146/annurev.mi.30.100176.001201
  6. Marciano-Cabral F, Cabral G. Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 2003; 16: 273-307. http://doi.org/10.1128/cmr.16.2.273-307.2003
  7. Joo SY, Aung JM, Shin M, Moon EK, Kong HH, Goo YK, Chung DI, Hong Y. The role of the Acanthamoeba castellanii Sir2-like protein in the growth and encystation of Acanthamoeba. Parasit Vectors 2020; 13: 368. http://doi.org/10.1186/s13071-020-04237-5
  8. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403: 795-800. http://doi.org/10.1038/35001622
  9. Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 2014; 25: 138-145. http://doi.org/10.1016/j.tem.2013.12.001
  10. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A 2000; 97: 5807-5811. http://doi.org/10.1073/pnas.110148297
  11. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16: 4623-4635. http://doi.org/10.1091/mbc.e05-01-0033
  12. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006; 23: 607-618. http://doi.org/10.1016/j.molcel.2006.06.026
  13. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5: 253-295. http://doi.org/10.1146/annurev.pathol.4.110807.092250
  14. Visvesvara GS, Balamuth W. Comparative studies on related freeliving and pathogenic amebae with special reference to Acanthamoeba. J Protozool 1975; 22: 245-256. http://doi.org/10.1111/j.1550-7408.1975.tb05860.x
  15. Bowers B, Korn ED. The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment. J Cell Biol 1969; 41: 786-805. http://doi.org/10.1083/jcb.41.3.786
  16. Nellen W, Gallwitz D. Actin genes and actin messenger RNA in Acanthamoeba castellanii. Nucleotide sequence of the split actin gene I. J Mol Biol 1982; 159: 1-18. http://doi.org/10.1016/0022-2836(82)90028-6
  17. Lee YR, Na BK, Moon EK, Song SM, Joo SY, Kong HH, Goo YK, Chung DI, Hong Y. Essential role for an M17 leucine aminopeptidase in encystation of Acanthamoeba castellanii. PLoS One 2015; 10: e0129884. http://doi.org/10.1371/journal.pone.0129884
  18. Mazur T, Zozwiak M. Value of the color test in assessing the viability of cysts of Acanthamoeba sp. Wiad Parazytol 1989; 35: 11-17.
  19. Picazarri K, Nakada-Tsukui K, Nozaki T. Autophagy during proliferation and encystation in the protozoan parasite Entamoeba invadens. Infect Immun 2008; 76: 278-288. http://doi.org/10.1128/IAI.00636-07
  20. Coulon C, Collignon A, McDonnell G, Thomas V. Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J Clin Microbiol 2010; 48: 2689-2697. http://doi.org/10.1128/JCM.00309-10
  21. Moon EK, Hong Y, Chung DI, Kong HH. Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba. Mol Biochem Parasitol 2012; 185: 121-126. http://doi.org/10.1016/j.molbiopara.2012.07.008
  22. Neff RJ, Neff RH. The biochemistry of amoebic encystment. Symp Soc Exp Biol 1969; 23: 51-81.
  23. Dudley R, Alsam S, Khan NA. Cellulose biosynthesis pathway is a potential target in the improved treatment of Acanthamoeba keratitis. Appl Microbiol Biotechnol 2007; 75: 133-140. http://doi.org/10.1007/s00253-006-0793-8
  24. Song SM, Han BI, Moon EK, Lee YR, Yu HS, Jha BK, Danne DB, Kong HH, Chung DI, Hong Y. Autophagy protein 16-mediated autophagy is required for the encystation of Acanthamoeba castellanii. Mol Biochem Parasitol 2012; 183: 158-165. http://doi.org/10.1016/j.molbiopara.2012.02.013
  25. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 2008; 105: 3374-3379. http://doi.org/10.1073/pnas.0712145105
  26. Zhang M, Pan Y, Dorfman RG, Yin Y, Zhou Q, Huang S, Liu J, Zhao S. Sirtinol promotes PEPCK1 degradation and inhibits gluconeogenesis by inhibiting deacetylase SIRT2. Sci Rep 2017; 7: 7. http://doi.org/10.1038/s41598-017-00035-9
  27. Wang J, Kim TH, Ahn MY, Lee J, Jung JH, Choi WS, Lee BM, Yoon KS, Yoon S, Kim HS. Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells. Int J Oncol 2012; 41: 1101-1109. http://doi.org/10.3892/ijo.2012.1534
  28. Xu H, Li Y, Chen L, Wang C, Wang Q, Zhang H, Lin Y, Li Q, Pang T. SIRT2 mediates multidrug resistance in acute myelogenous leukemia cells via ERK1/2 signaling pathway. Int J Oncol 2016; 48: 613-623. http://doi.org/10.3892/ijo.2015.3275
  29. Hoffmann G, Breitenbucher F, Schuler M, Ehrenhofer-Murray AE. A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J Biol Chem 2014; 289: 5208-5216. http://doi.org/10.1074/jbc.M113.487736
  30. Hanson RW, Patel YM. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. Adv Enzymol Relat Areas Mol Biol 1994; 69: 203-281. http://doi.org/10.1002/9780470123157.ch6
  31. Nye CK, Hanson RW, Kalhan SC. Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. J Biol Chem 2008; 283: 27565-27574. http://doi.org/10.1074/jbc.M804393200
  32. Tannen RL. Ammonia metabolism. Am J Physiol 1978; 235: F265-277. http://doi.org/10.1152/ajprenal.1978.235.4.F265