DOI QR코드

DOI QR Code

Preparation of Fish-skin-based Conjugated Collagen Fibers and Nonwovens for Wound Dressings

창상피복재용 어피 콜라겐 복합섬유 및 부직포 제조

  • Gwak, Hyeon Jung (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Ahn, Hyunchul (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Bae, Young Hwan (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Won Jun (Department of Fiber System Engineering, Dankook University) ;
  • Yeo, Sang Young (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
  • 곽현중 (한국생산기술연구원 융합기술연구소 섬유연구부문) ;
  • 안현철 (한국생산기술연구원 융합기술연구소 섬유연구부문) ;
  • 배영환 (한국생산기술연구원 융합기술연구소 섬유연구부문) ;
  • 이원준 (단국대학교 파이버시스템공학과) ;
  • 여상영 (한국생산기술연구원 융합기술연구소 섬유연구부문)
  • Received : 2022.02.01
  • Accepted : 2022.02.20
  • Published : 2022.02.28

Abstract

Collagen is used in various medical and cosmetic materials as a biopolymer. In order to use it for high-end medical fibers, its mechanical properties must be improved, and this can be achieved by conjugating it with fish-skin-based collagen and chitosan. The conjugated collagen fibers can utilize the advantages of the materials and can be applied to make wet-laid nonwovens for wound dressing. In this study, the conjugated collagen fibers were prepared by wet spinning and their surface, optical, and mechanical properties were analyzed based on the various compositions of collagen and chitosan. In addition, the wet-laid nonwovens were manufactured with bilayers, designed with an inner layer of conjugated collagen fibers and an outer layer of cotton/chitosan spunlace nonwoven. The characteristics of the wet-laid nonwovens in terms of their liquid-handling properties and the distribution of their pore sizes were investigated. The results thus obtained show that the use of conjugated fibers in wet-laid nonwovens can affect their properties, which can be controlled by adjusting the composition ratio.

Keywords

Acknowledgement

이 논문은 산업통상자원부의 지원을 받아 수행된 연구임(과제번호 20000519).

References

  1. H. Liu, C. Wang, C. Li, Y. Qin, Z. Wang, F. Yang, Z. Li, and J. Wang, "A Functional Chitosan-based Hydrogel as a Wound Dressing and Drug Delivery System in the Treatment of Wound Healing", RSC Adv., 2018, 8, 7533-7549. https://doi.org/10.1039/C7RA13510F
  2. S. Guo and L. A. DiPietro, "Factors Affecting Wound Healing", J. Dent. Res., 2010, 89, 219-229. https://doi.org/10.1177/0022034509359125
  3. K. Y. Seong, E. K. Koh, S. H. Lee, M. H. Kwak, H. J. Son, H. S. Lee, D. Y. Hwang, and Y. J. Jung, "Preparation and Characterization of High Absorptive Cellulose Film Derived from Styela Clava Tunic for Wound Dressing", Text. Color. Finish., 2015, 27, 70-79. https://doi.org/10.5764/TCF.2015.27.1.70
  4. C. Chang, B. Ginn, N. K. Livingston, Z. Yao, B. Slavin, M. W. King, S. Chung, and H. Q. Mao, "1.4.6-Medical Fibers and Biotextiles", Biomater. Sci., 2020, 4, 575-600. https://doi.org/10.1039/C5BM00589B
  5. M. Zilberman and J. J. Elsner, "Antibiotic-eluting Medical Devices for Various Applications", J. Controlled Release., 2008, 130, 202-215. https://doi.org/10.1016/j.jconrel.2008.05.020
  6. Z. Xu, S. Han, Z. Gu, and J. Wu, "Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing". Adv. Healthcare Mater., 2020, 9, 1901502. https://doi.org/10.1002/adhm.201901502
  7. Y. Zhong, H. Xiao, F. Seidi, and Y. Jin, "Natural Polymer-based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings", Biomacromolecules, 2020, 21, 2983-3006. https://doi.org/10.1021/acs.biomac.0c00760
  8. R. P. Bareil, R. Gauvin, and F. Berthod, "Collagen-Based Biomaterials for Tissue Engineering Applications", Materials, 2010, 3, 1863-1887. https://doi.org/10.3390/ma3031863
  9. D. Prokop and K. Kivirikko, "Collagens: Molecular Biology, Diseases and Potentials for Therapy", Annu. Rev. Biochem., 1995, 64, 403-434. https://doi.org/10.1146/annurev.bi.64.070195.002155
  10. L. Sun, L. Li, Y. Wang, M. Li, S Xu, and C. Zhang, "A Collagenbased Bi-layered Composite Dressing for Accelerated Wound Healing", J. Tissue Viability, 2022, 31, 180-189. https://doi.org/10.1016/j.jtv.2021.09.003
  11. J. Elango, J. Zhang, B. Bao, K. Palaniyandi, S. Wang, W. Wenhui, and J. S. Robinson, "Rheological, Biocompatibility and Osteogenesis Assessment of Fish Collagen Scaffold for Bone Tissue Engineering", Int. J. Biol. Macromol., 2016, 91, 51-59. https://doi.org/10.1016/j.ijbiomac.2016.05.067
  12. Z. Bao, Y. Sun, K. Rai, X. Peng, S. Wang, R. Nian, and M. Xian, "The Promising Indicators of the Thermal and Mechanical Properties of Collagen from Bass and Tilapia: Synergistic Effects of Hydroxyproline and Cysteine", Biomater. Sci., 2018, 6, 3042-3052. https://doi.org/10.1039/c8bm00675j
  13. A. Gautieri, S. Vesentini, A. Redaelli, and M. J. Buehler, "Hierarchical Structure and Nanomechanics of Collagen Microfibrils from the Atomistic Scale Up", Nano Lett., 2011, 11, 757-766. https://doi.org/10.1021/nl103943u
  14. A. Lynn, I. Yannas, and W. Bonfield, "Antigenicity and Immunogenicity of Collagen", J. Biomed. Mater. Res., Part B, 2004, 71, 343-353.
  15. Y. Hua, C. Ma, T. Wei, L. Zhang, and J. Shen, "Collagen/ Chitosan Complexes: Preparation, Antioxidant Activity, Tyrosinase Inhibition Activity, and Melanin Synthesis", Int. J. Mol. Sci., 2020, 21, 313-327. https://doi.org/10.3390/ijms21010313
  16. S. R. Moxon, N. J. Corbett, K. Fisher, G. Potjewyd, M. Domingos, and N. M. Hooper, "Blended Alginate/collagen Hydrogels Promote Neurogenesis and Neuronal Maturation", Mater. Sci. Eng., C, 2019, 104, 109904. https://doi.org/10.1016/j.msec.2019.109904
  17. M. Taravel and A. Domard, "Collagen and Its Interaction with Chitosan: II. Influence of the Physicochemical Characteristics of Collagen", Biomaterials, 1995, 16, 865-871. https://doi.org/10.1016/0142-9612(95)94149-F
  18. M. Bodnar, J. F. Hartmann, and J. Borbely, "Preparation and Characterization of Chitosan-based Nanoparticles", Bio macromolecules, 2005, 6, 2521-2527.
  19. S. Hirano, M. Zhang, M. Nakagawa, and T. Miyata, "Wet Spun Chitosan-collagen Fibers, Their Chemical N-Modifications, and Blood Compatibility", Biomaterials, 2000, 21, 997-1003. https://doi.org/10.1016/S0142-9612(99)00258-6
  20. H. J. Gwak, H. Ahn, W. J. Lee, and S. Y. Yeo, "Manufacturing and Material Analysis of Collagen/Chitosan Conjugated Fibers for Medical Application," Text. Color. Finish., 2021, 33, 131-140. https://doi.org/10.5764/TCF.2021.33.3.131
  21. H. Ahn, D. J. Gong, H. H. Lee, J. Y. Seo, K.-M. Song, S. J. Eom, and S. Y. Yeo, "Mechanical Properties of Porcine and Fish Skin-Based Collagen and Conjugated Collagen Fibers", Polymers, 2021, 13, 2151-2161. https://doi.org/10.3390/polym13132151
  22. D. J. Gong, Y. H. Bae, H. H. Lee, S. J. Park, H. D. Kim, and S. Y. Yeo, "Properties of Alginate/Gelatin Wet-laid Nonwovens Based on Fiber Length," Text. Sci. Eng., 2020, 57, 50-56. https://doi.org/10.12772/TSE.2020.57.050
  23. S. J. Doh, J. Y. Lee, D. Y. Lim, and J. N. Im, "Manufacturing and Analyses of Wet-laid Nonwoven Consisting of Carboxymethyl Cellulose Fibers", Fiber. Polym., 2014, 12, 2176-2184.
  24. Y. N. Yoon, J. N. Im, and S. J. Do, "Study on the Effects of Reaction Conditions on Carboxymethyl Cellulose Nonwoven Manufactured by Wet-laid Process", Fiber. Polym., 2013, 14, 1012-1018. https://doi.org/10.1007/s12221-013-1012-8
  25. H. J. Gwak, H. Ahn, Y. H. Bae, W. J. Lee, and S. Y. Yeo, "Manufacturing and Material Analysis of Chitosan/Collagen Conjugated Fibers and Its Non-woven Fabrics", 2021 Autumn Conference of the Korean Fiber Society, Busan, 2021, p.48.
  26. N. Shanmugasundaram, P. Ravichandran, P. Reddy, N. Ramamurty, S. Pal, and K. Rao, "Collagen-chitosan Polymeric Scaffolds for the in vitro Culture of Human Epidermoid Carcinoma Cells", Biomaterials, 2001, 22, 1943-1951. https://doi.org/10.1016/S0142-9612(00)00220-9
  27. M. Jackson, P. H. Watson, W. C. Halliday, and H. H. Mantsch, "Beware of Connective Tissue Proteins: Assignment and Implications of Collagen Absorptions in Infrared Spectra of Human Tissues", Biochim. Biophys. Acta, Mol. Basis Dis., 1995, 1270, 1-6. https://doi.org/10.1016/0925-4439(94)00056-V
  28. V. Renugopalakrishnan, G. Chandrakasan, S. Moore, T. Hutson, C. Berney, and R. S. Bhatnagar, "Bound Water in Collagen: Evidence from Fourier Transform Infrared and Fourier Transform Infrared Photoacoustic Spectroscopic Study", Macromolecules, 1989, 22, 4121-4124. https://doi.org/10.1021/ma00200a054
  29. M. Andonegi, K. Las Heras, E. Santos-Vizcaino, M. Igartua, R. M. Hernandez, K. de la Caba, and P. Guerrero, "Structure- Properties Relationship of Chitosan/collagen Films with Potential for Biomedical Applications", Carbohydr. Polym., 2020, 237, 116159. https://doi.org/10.1016/j.carbpol.2020.116159
  30. L. Qi, Z. Xu, X. Jiang, C. Hu, and X. Zou, "Preparation and Antibacterial Activity of Chitosan Nanoparticles," Carbohydr. Res., 2004, 339, 2693-2700. https://doi.org/10.1016/j.carres.2004.09.007
  31. E. Proksch, "pH in Nature, Humans and Skin", J. Dermatol., 2018, 45, 1044-1052. https://doi.org/10.1111/1346-8138.14489
  32. V. Kanikireddy, K. Varaprasad, T. Jayaramudu, C. Karthikeyan, and R. Sadiku, "Carboxymethyl Cellulose-based Materials for Infection Control and Wound Healing: A Review", Int. J. Biol. Macromol., 2020, 164, 963-975. https://doi.org/10.1016/j.ijbiomac.2020.07.160
  33. S. M. Lee, I. K. Park, Y. S. Kim, H. J. Kim, H. Moon, S. Mueller, and Y. I. Jeong, "Physical, Morphological, and Wound Healing Properties of a Polyurethane Foam-film Dressing", Biomater. Res., 2016, 20, 1-11. https://doi.org/10.1186/s40824-016-0048-4
  34. Y. O. Kang, W. H. Park, S. J. Do, and J. N. Im, "Composite Nonwoven of Meltblown/Electrospun Polyurethane," Text. Sci. Eng., 2012, 49, 370-376. https://doi.org/10.12772/TSE.2012.49.6.370
  35. E. C. Jung, J. H. Kim, K. H. Lee, J. A. Yoon, I. S. Lee, and S. H. Lee, "Application of Gravitational Field-flow Fractionation (GrFFF) for Monitoring of Clustering Behavior of Staphylococcus aureus", Bull. Korean Chem. Soc., 2012, 33, 711-713. https://doi.org/10.5012/bkcs.2012.33.2.711