Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2021R1A4A1022059).
References
- A. K. Mishra, S. Chattopadhyay, and G. B. Nando, "Effect of Modifiers on Morphology and Thermal Properties of Novel Thermoplastic Polyurethane-Peptized Laponite Nanocomposite", J. Appl. Polym. Sci., 2010, 115, 558-569. https://doi.org/10.1002/app.30975
- A. Harynska, I. Carayon, P. Kosmela, A. Brillowska- Dabrowska, M. Lapinski, J. Kucinska-Lipka, and H. Janik, "Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering", Materials, 2020, 13, 4457. https://doi.org/10.3390/ma13194457
- Y. Han and J. Kim, "A Study on the Mechanical Properties of Knit Fabric Using 3D Printing -Focused on PLA, TPU Filament-", J. Fash. Bus., 2018, 22, 93-105. https://doi.org/10.12940/JFB.2018.22.4.93
- J. Jeong, H. Park, Y. Lee, J. Kang, and J. Chun, "Developing Parametric Design Fashion Products Using 3D Printing Technology", Fash Text., 2021, 8, 22. https://doi.org/10.1186/s40691-021-00247-8
- S. Kim, H. Seong, Y. Her, and J. Chun, "A Study of the Development and Improvement of Fashion Products Using a FDM Type 3D Printer", Fash Text., 2019, 6, 9. https://doi.org/10.1186/s40691-018-0162-0
- J. Chun, "Development of Wearable Fashion Prototypes Using Entry-Level 3D Printers", J. Korean. Soc. Cloth. Text., 2017, 41, 468-486. https://doi.org/10.5850/JKSCT.2017.41.3.468
- A. Przybytek, I. Gubanska, J. Kucinska-Lipka, and H. Janik, "Polyurethanes as a Potential Medical-Grade Filament for Use in Fused Deposition Modeling 3D Printers - a Brief Review", Fibres Text. Eastern Eur., 2018, 6, 120-125.
- A. Harynska, I. Gubanska, J. Kucinska-Lipka, and H. Janik, "Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology", Polymers, 2018, 10, 1304. https://doi.org/10.3390/polym10121304
- J. Xiao and Y. Gao, "The Manufacture of 3D Printing of Medical Grade TPU", Prog Addit Manuf., 2017, 2, 117-123. https://doi.org/10.1007/s40964-017-0023-1
- L. Rodriguez-Parada, S. Rosa, and P. F. Mayuet, "Influence of 3D-Printed TPU Properties for the Design of Elastic Products", Polymers, 2021, 13, 2519. https://doi.org/10.3390/polym13152519
- P. Platek, K. Rajkowski, K. Cieplak, M. Sarzynski, J. Malachowski, R. Wozniak, and J. Janiszewski, "Deformation Process of 3D Printed Structures Made from Flexible Material with Different Values of Relative Density", Polyemers, 2020, 12, 2120. https://doi.org/10.3390/polym12092120
- M. S. Chaudhry and A. Czekanski, "Evaluating FDM Process Parameter Sensitive Mechanical Performance of Elastomers at Various Strain Rates of Loading", Materials, 2020, 13, 3202. https://doi.org/10.3390/ma13143202
- N. Vidakis, M. Petousis, A. Korlos, E. Velidakis, N, Mountakis, C. Charou, and A. Myftari, "Strain Rate Sensitivity of Polycarbonate and Thermoplastic Polyurethane for Various 3D Printing Temperatures and Layer Heights", Polymers, 2021, 13, 2752. https://doi.org/10.3390/polym13162752
- X. Lin, J. Gao, J. Wang, R. Wang, M. Gong, L. Zhang, Y. Lu, D. Wang, and L. Zhang, "Desktop Printing of 3D Thermoplastic Polyurethane Parts with Enhanced Mechanical Performance Using Filaments with Varying Stiffness", Addit. Manuf., 2021, 47, 102267.
- B. Arifvianto, T. N. Iman, B. T. Prayoga, R. Dharmastiti, U. A. Salim, M. Mahardika, and S. Suyitno, "Tensile Properties of the FFF-Processed Thermoplastic Polyurethane (TPU) Elastomer", Int. J. Adv. Manuf. Technol., 2021, 117, 1709-1719. https://doi.org/10.1007/s00170-021-07712-0
- F. Peng, B. D. Vogt, and M. Cakmak, "Complex Flow and Temperature History during Melt Extrusion in Material Extrusion Additive Manufacturing", Addit. Manuf., 2018, 22, 197-206. https://doi.org/10.1016/j.addma.2018.05.015
- D. A. Anderegg, H. A. Bryant, D. C. Ruffin, S. M. Skrip Jr, J. J. Fallon, E. L. Gilmer, and M. J. Bortner, "In-Situ Monitoring of Polymer Flow Temperature and Pressure in Extrusion Based Additive Manufacturing", Addit. Manuf., 2019, 26, 76-83. https://doi.org/10.1016/j.addma.2019.01.002
- C. Ge, S. Wang, W. Zheng, and W. Zhai, "Preparation of Microcellular Thermoplastic Polyurethane (TPU) Foam and Its Tensile Property", Polym. Eng. Sci., 2018, 58, E158-E166. https://doi.org/10.1002/pen.24813
- I. Jung, H. Kim, and S. Lee, "Charaterizations of 3D Printed Re-entrant Pattern/Aramid Knit Composite Prepared by Various Tilting Angles", Fash. Text., 2021, 8, 44. https://doi.org/10.1186/s40691-021-00273-6
- I. Jung and S. Lee, "Effect of Surface Roughness of Fabrics on Tensile Properties of 3D Printing Auxetic Re-entrant Pattern/ Textile Composites", Text. Sci. Eng., 2021, 58, 167-176. https://doi.org/10.12772/TSE.2021.58.167
- H, Kim, S. Kabir, and S. Lee, "Mechanical Properties of 3D Printed Re-entrant Pattern/neoprene Composite Textile by Pattern Tilting Angle of Pattern", J. Korean. Soc. Cloth. Text., 2021, 45, 106-122. https://doi.org/10.5850/JKSCT.2021.45.1.106
- S. Kabir and S. Lee, "Study of Shape Memory and Tensile Property of 3D Printed Sinusoidal Sample/Nylon Composite Focused on Various Thicknesses and Shape Memory Cycles", Polymers, 2020, 12, 1600. https://doi.org/10.3390/polym12071600
- S. Kabir, H. Kim, and S. Lee, "Physical Property of 3D-Printed Sinusoidal Pattern Using Shape Memory TPU Filament", Text. Res. J., 2020, 90, 2399-2410. https://doi.org/10.1177/0040517520919750
- H. Kim and S. Lee, "Mechanical Properties of 3D Printed Reentrant Pattern with Various Hardness Types of TPU Filament Manufactured through FDM 3D Printing", Text. Sci. Eng., 2020, 57, 166-176. https://doi.org/10.12772/tse.2020.57.166
- S. H. Lee, "Morphology and Properties of Textiles Manufactured by Three-Dimensional Printing Based on Fused Deposition Modeling", Text. Sci. Eng., 2015, 52, 272-279. https://doi.org/10.12772/TSE.2015.52.272
- S. Lee, "Evaluation of Mechanical Properties and Washability of 3D Printed Lace/Voil Composite Fabrics Manufactured by FDM 3D Printing Technology", Fashion Text. Res. J., 2018, 20, 353-359. https://doi.org/10.5805/SFTI.2018.20.3.353
- S. Lee, "Tensile Properties and Stiffnesses of 3D-Printed Lace/ Voile Composite Fabrics Manufactured by Various Roller Processes", Text. Sci. Eng., 2019, 56, 8-14. https://doi.org/10.12772/tse.2019.56.008
- M. Asensio, V. Costa, A. Nohales, O. Bianchi, and C. M. Gomez, "Tunable Structure and Properties of Segmented Thermoplastic Polyurethanes as a Function of Flexible Segment", Polymers, 2019, 11, 1910. https://doi.org/10.3390/polym11121910
- P. Kasprzyk, K. Blazek, P. Parcheta, and J. Datta, "Green Thermoplastic Poly(ether-urethane)s - Synthesis, Chemical Structure and Selected Properties Investigation", Polimery, 2020, 65, 672-680. https://doi.org/10.14314/polimery.2020.10.2
- P. Kasprzyk and J. Datta, "Effect of Molar Ratio [NCO]/[OH] Groups during Prepolymer Chains Extending Step on the Morphology and Selected Mechanical Properties of Final Bio-Based Thermoplastic Poly(ether-urethane) Materials", Polym. Eng. Sci., 2018, 58, E199-E206. https://doi.org/10.1002/pen.24874
- S. Charlon, J. L. Boterff, and J. Soulestin, "Fused Filament Fabrication of Polypropylene: Influence of the Bead Temperature on Adhesion and Porosity", Addit. Manuf., 2021, 38, 101838.
- X. Lin, P. Coates, M. Hebda, R. Wang, Y. Lu, and L. Zhang, "Experimental Analysis of the Tensile Property of FFF-printed Elastomers", Polym. Test., 2020, 90, 106687. https://doi.org/10.1016/j.polymertesting.2020.106687