DOI QR코드

DOI QR Code

Recent Stem Cell Research on Hemorrhagic Stroke : An Update

  • Kim, Jong-Tae (Institute of New Frontier Research, Hallym University College of Medicine) ;
  • Youn, Dong Hyuk (Institute of New Frontier Research, Hallym University College of Medicine) ;
  • Kim, Bong Jun (Institute of New Frontier Research, Hallym University College of Medicine) ;
  • Rhim, Jong Kook (Department of Neurosurgery, Jeju National University College of Medicine) ;
  • Jeon, Jin Pyeong (Institute of New Frontier Research, Hallym University College of Medicine)
  • 투고 : 2021.05.24
  • 심사 : 2021.08.25
  • 발행 : 2022.03.01

초록

Although technological advances and clinical studies on stem cells have been increasingly reported in stroke, research targeting hemorrhagic stroke is still lacking compared to that targeting ischemic stroke. Studies on hemorrhagic stroke are also being conducted, mainly in the USA and China. However, little research has been conducted in Korea. In reality, stem cell research or treatment is unfamiliar to many domestic neurosurgeons. Nevertheless, given the increased interest in regenerative medicine and the increase of life expectancy, attention should be paid to this topic. In this paper, we summarized pre-clinical rodent studies and clinical trials using stem cells for hemorrhagic stroke. In addition, we discussed results of domestic investigations and future perspectives on stem cell research for a better understanding.

키워드

과제정보

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number : HR21C0198) and Hallym University Research Fund.

참고문헌

  1. Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, et al. : Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 44 : 497-504, 2013 https://doi.org/10.1161/strokeaha.112.679092
  2. Ahn SY, Chang YS, Sung SI, Park WS : Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I doseescalation clinical trial. Stem Cells Transl Med 7 : 847-856, 2018 https://doi.org/10.1002/sctm.17-0219
  3. Ahn SY, Sung DK, Kim YE, Sung S, Chang YS, Park WS : Brain-derived neurotropic factor mediates neuroprotection of mesenchymal stem cellderived extracellular vesicles against severe intraventricular hemorrhage in newborn rats. Stem Cells Transl Med 10 : 374-384, 2021 https://doi.org/10.1002/sctm.20-0301
  4. An SJ, Kim TJ, Yoon BW : Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke 19 : 3-10, 2017 https://doi.org/10.5853/jos.2016.00864
  5. Baker EW, Platt SR, Lau VW, Grace HE, Holmes SP, Wang L, et al. : Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci Rep 7 : 10075, 2017 https://doi.org/10.1038/s41598-017-10406-x
  6. Bhasin A, Srivastava MV, Kumaran SS, Mohanty S, Bhatia R, Bose S, et al. : Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc Dis Extra 1 : 93-104, 2011 https://doi.org/10.1159/000333381
  7. Chamberlain G, Fox J, Ashton B, Middleton J : Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25 : 2739-2749, 2007 https://doi.org/10.1634/stemcells.2007-0197
  8. Chang Z, Mao G, Sun L, Ao Q, Gu Y, Liu Y : Cell therapy for cerebral hemorrhage: five year follow-up report. Exp Ther Med 12 : 3535-3540, 2016 https://doi.org/10.3892/etm.2016.3811
  9. Chen H, Chen L, Xie D, Niu J : Protective effects of transforming growth factor-β1 knockdown in human umbilical cord mesenchymal stem cells against subarachnoid hemorrhage in a rat model. Cerebrovasc Dis 49 : 79-87, 2020 https://doi.org/10.1159/000505311
  10. Chen L, Xi H, Huang H, Zhang F, Liu Y, Chen D, et al. : Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant 22 Suppl 1 : S83-S91, 2013
  11. Chen X, Liang H, Xi Z, Yang Y, Shan H, Wang B, et al. : BM-MSC transplantation alleviates intracerebral hemorrhage-induced brain injury, promotes astrocytes vimentin expression, and enhances astrocytes antioxidation via the Cx43/Nrf2/HO-1 axis. Front Cell Dev Biol 8 : 302, 2020 https://doi.org/10.3389/fcell.2020.00302
  12. Choi BY, Kim OJ, Min SH, Jeong JH, Suh SW, Chung TN : Human placenta-derived mesenchymal stem cells reduce mortality and hematoma size in a rat intracerebral hemorrhage model in an acute phase. Stem Cells Int 2018 : 1658195, 2018 https://doi.org/10.1155/2018/1658195
  13. Colombo M, Raposo G, Thery C : Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30 : 255-289, 2014 https://doi.org/10.1146/annurev-cellbio-101512-122326
  14. Cruz-Martinez P, Gonzalez-Granero S, Molina-Navarro MM, PachecoTorres J, Garcia-Verdugo JM, Geijo-Barrientos E, et al. : Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine model. Cell Death Dis 7 : e2223, 2016 https://doi.org/10.1038/cddis.2016.130
  15. Cui C, Cui Y, Gao J, Li R, Jiang X, Tian Y, et al. : Intraparenchymal treatment with bone marrow mesenchymal stem cell-conditioned medium exerts neuroprotection following intracerebral hemorrhage. Mol Med Rep 15 : 2374-2382, 2017 https://doi.org/10.3892/mmr.2017.6223
  16. Cui J, Cui C, Cui Y, Li R, Sheng H, Jiang X, et al. : Bone marrow mesenchymal stem cell transplantation increases GAP-43 expression via ERK1/2 and PI3K/Akt pathways in intracerebral hemorrhage. Cell Physiol Biochem 42 : 137-144, 2017 https://doi.org/10.1159/000477122
  17. Deng L, Gao X, Fan G, Yang C : Effects of GDNF-transfected marrow stromal cells on rats with intracerebral hemorrhage. J Stroke Cerebrovasc Dis 28 : 2555-2562, 2019 https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.06.002
  18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. : Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8 : 315-317, 2006 https://doi.org/10.1080/14653240600855905
  19. Faroni A, Smith RJ, Lu L, Reid AJ : Human Schwann-like cells derived from adipose-derived mesenchymal stem cells rapidly de-differentiate in the absence of stimulating medium. Eur J Neurosci 43 : 417-430, 2016 https://doi.org/10.1111/ejn.13055
  20. Fernandez-Susavila H, Bugallo-Casal A, Castillo J, Campos F : Adult stem cells and induced pluripotent stem cells for stroke treatment. Front Neurol 10 : 908, 2019 https://doi.org/10.3389/fneur.2019.00908
  21. George S, Hamblin MR, Abrahamse H : Differentiation of mesenchymal stem cells to neuroglia: in the context of cell signalling. Stem Cell Rev Rep 15 : 814-826, 2019 https://doi.org/10.1007/s12015-019-09917-z
  22. Guo S, Zhen Y, Wang A : Transplantation of bone mesenchymal stem cells promotes angiogenesis and improves neurological function after traumatic brain injury in mouse. Neuropsychiatr Dis Treat 13 : 2757-2765, 2017 https://doi.org/10.2147/ndt.s141534
  23. Han M, Cao Y, Guo X, Chu X, Li T, Xue H, et al. : Mesenchymal stem cell-derived extracellular vesicles promote microglial M2 polarization after subarachnoid hemorrhage in rats and involve the AMPK/NF-κB signaling pathway. Biomed Pharmacother 133 : 111048, 2021 https://doi.org/10.1016/j.biopha.2020.111048
  24. Han Y, Seyfried D, Meng Y, Yang D, Schultz L, Chopp M, et al. : Multipotent mesenchymal stromal cell-derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat. J Neurosurg 131 : 290-300, 2018 https://doi.org/10.3171/2018.2.jns171475
  25. Holm MM, Kaiser J, Schwab ME : Extracellular vesicles: multimodal envoys in neural maintenance and repair. Trends Neurosci 41 : 360-372, 2018 https://doi.org/10.1016/j.tins.2018.03.006
  26. Hong KS, Bang OY, Kang DW, Yu KH, Bae HJ, Lee JS, et al. : Stroke statistics in Korea: part I. Epidemiology and risk factors: a report from the korean stroke society and clinical research center for stroke. J Stroke 15 : 2-20, 2013 https://doi.org/10.5853/jos.2013.15.1.2
  27. Huang AP, Hsu YH, Wu MS, Tsai HH, Su CY, Ling TY, et al. : Potential of stem cell therapy in intracerebral hemorrhage. Mol Biol Rep 47 : 4671-4680, 2020 https://doi.org/10.1007/s11033-020-05457-9
  28. Huang P, Freeman WD, Edenfield BH, Brott TG, Meschia JF, Zubair AC : Safety and efficacy of intraventricular delivery of bone marrow-derived mesenchymal stem cells in hemorrhagic stroke model. Sci Rep 9 : 5674, 2019 https://doi.org/10.1038/s41598-019-42182-1
  29. Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK : Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34 : 2258-2263, 2003 https://doi.org/10.1161/01.str.0000083698.20199.1f
  30. Ji G, Liu M, Zhao XF, Liu XY, Guo QL, Guan ZF, et al. : NF-κB signaling is involved in the effects of intranasally engrafted human neural stem cells on neurofunctional improvements in neonatal rat hypoxic-ischemic encephalopathy. CNS Neurosci Ther 21 : 926-935, 2015 https://doi.org/10.1111/cns.12441
  31. Ji XL, Ma L, Zhou WH, Xiong M : Narrative review of stem cell therapy for ischemic brain injury. Transl Pediatr 10 : 435-445, 2021 https://doi.org/10.21037/tp-20-262
  32. Kim S, Kim YE, Hong S, Kim KT, Sung DK, Lee Y, et al. : Reactive microglia and astrocytes in neonatal intraventricular hemorrhage model are blocked by mesenchymal stem cells. Glia 68 : 178-192, 2020 https://doi.org/10.1002/glia.23712
  33. Kimbrel EA, Lanza R : Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 14 : 681-692, 2015 https://doi.org/10.1038/nrd4738
  34. Kimbrel EA, Lanza R : Next-generation stem cells - ushering in a new era of cell-based therapies. Nat Rev Drug Discov 19 : 463-479, 2020 https://doi.org/10.1038/s41573-020-0064-x
  35. Krafft PR, Rolland WB, Duris K, Lekic T, Campbell A, Tang J, et al. : Modeling intracerebral hemorrhage in mice: injection of autologous blood or bacterial collagenase. J Vis Exp (67) : e4289, 2012
  36. Kuramoto Y, Takagi T, Tatebayashi K, Beppu M, Doe N, Fujita M, et al. : Intravenous administration of human adipose-derived stem cells ameliorates motor and cognitive function for intracerebral hemorrhage mouse model. Brain Res 1711 : 58-67, 2019 https://doi.org/10.1016/j.brainres.2018.12.042
  37. Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, et al. : Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25 : 1204-1212, 2007 https://doi.org/10.1634/stemcells.2006-0409
  38. Lee HJ, Kim KS, Park IH, Kim SU : Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2 : e156, 2007 https://doi.org/10.1371/journal.pone.0000156
  39. Lee HJ, Lim IJ, Lee MC, Kim SU : Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model. J Neurosci Res 88 : 3282-3294, 2010 https://doi.org/10.1002/jnr.22474
  40. Lee HJ, Park IH, Kim HJ, Kim SU : Human neural stem cells overexpressing glial cell line-derived neurotrophic factor in experimental cerebral hemorrhage. Gene Ther 16 : 1066-1076, 2009 https://doi.org/10.1038/gt.2009.51
  41. Li G, Yu H, Liu N, Zhang P, Tang Y, Hu Y, et al. : Overexpression of CX3CR1 in adipose-derived stem cells promotes cell migration and functional recovery after experimental intracerebral hemorrhage. Front Neurosci 13 : 462, 2019 https://doi.org/10.3389/fnins.2019.00462
  42. Li ZM, Zhang ZT, Guo CJ, Geng FY, Qiang F, Wang LX : Autologous bone marrow mononuclear cell implantation for intracerebral hemorrhage-a prospective clinical observation. Clin Neurol Neurosurg 115 : 72-76, 2013 https://doi.org/10.1016/j.clineuro.2012.04.030
  43. Liu W, Li R, Yin J, Guo S, Chen Y, Fan H, et al. : Mesenchymal stem cells alleviate the early brain injury of subarachnoid hemorrhage partly by suppression of Notch1-dependent neuroinflammation: involvement of Botch. J Neuroinflammation 16 : 8, 2019 https://doi.org/10.1186/s12974-019-1396-5
  44. MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J, et al. : Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab 28 : 516-525, 2008 https://doi.org/10.1038/sj.jcbfm.9600548
  45. Mello TG, Rosado-de-Castro PH, Campos RMP, Vasques JF, RangelJunior WS, Mattos RSAR, et al. : Intravenous human umbilical cordderived mesenchymal stromal cell administration in models of moderate and severe intracerebral hemorrhage. Stem Cells Dev 29 : 586-598, 2020 https://doi.org/10.1089/scd.2019.0176
  46. Min S, Kim OJ, Bae J, Chung TN : Effect of pretreatment with the NADPH oxidase inhibitor apocynin on the therapeutic efficacy of human placenta-derived mesenchymal stem cells in intracerebral hemorrhage. Int J Mol Sci 19 : 3679, 2018 https://doi.org/10.3390/ijms19113679
  47. Nijboer CH, Kooijman E, van Velthoven CT, van Tilborg E, Tiebosch IA, Eijkelkamp N, et al. : Intranasal stem cell treatment as a novel therapy for subarachnoid hemorrhage. Stem Cells Dev 27 : 313-325, 2018 https://doi.org/10.1089/scd.2017.0148
  48. Nonaka M, Yoshikawa M, Nishimura F, Yokota H, Kimura H, Hirabayashi H, et al. : Intraventricular transplantation of embryonic stem cell-derived neural stem cells in intracerebral hemorrhage rats. Neurol Res 26 : 265-272, 2004 https://doi.org/10.1179/016164104225014049
  49. Qin J, Gong G, Sun S, Qi J, Zhang H, Wang Y, et al. : Functional recovery after transplantation of induced pluripotent stem cells in a rat hemorrhagic stroke model. Neurosci Lett 554 : 70-75, 2013 https://doi.org/10.1016/j.neulet.2013.08.047
  50. Qin J, Ma X, Qi H, Song B, Wang Y, Wen X, et al. : Transplantation of induced pluripotent stem cells alleviates cerebral inflammation and neural damage in hemorrhagic stroke. PLoS One 10 : e0129881, 2015 https://doi.org/10.1371/journal.pone.0129881
  51. Qin J, Song B, Zhang H, Wang Y, Wang N, Ji Y, et al. : Transplantation of human neuro-epithelial-like stem cells derived from induced pluripotent stem cells improves neurological function in rats with experimental intracerebral hemorrhage. Neurosci Lett 548 : 95-100, 2013 https://doi.org/10.1016/j.neulet.2013.05.007
  52. Ratcliffe E, Glen KE, Naing MW, Williams DJ : Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull 108 : 73-94, 2013 https://doi.org/10.1093/bmb/ldt034
  53. Sart S, Ma T, Li Y : Preconditioning stem cells for in vivo delivery. Biores Open Access 3 : 137-149, 2014 https://doi.org/10.1089/biores.2014.0012
  54. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. : Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385 : 509-516, 2015 https://doi.org/10.1016/S0140-6736(14)61376-3
  55. Shoemaker LD, Kornblum HI : Neural stem cells (NSCs) and proteomics. Mol Cell Proteomics 15 : 344-354, 2016 https://doi.org/10.1074/mcp.O115.052704
  56. Tang Y, Yu P, Cheng L : Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 8 : e3108, 2017 https://doi.org/10.1038/cddis.2017.504
  57. Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW : Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257 : 491-496, 1957 https://doi.org/10.1056/NEJM195709122571102
  58. Toyoshima A, Yasuhara T, Date I : Mesenchymal stem cell therapy for ischemic stroke. Acta Med Okayama 71 : 263-268, 2017
  59. Tsang KS, Ng CPS, Zhu XL, Wong GKC, Lu G, Ahuja AT, et al. : Phase I/II randomized controlled trial of autologous bone marrow-derived mesenchymal stem cell therapy for chronic stroke. World J Stem Cells 9 : 133-143, 2017 https://doi.org/10.4252/wjsc.v9.i8.133
  60. Ullah I, Subbarao RB, Rho GJ : Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 35 : e00191, 2015 https://doi.org/10.1042/BSR20150025
  61. Vahidy FS, Rahbar MH, Zhu H, Rowan PJ, Bambhroliya AB, Savitz SI : Systematic review and meta-analysis of bone marrow-derived mononuclear cells in animal models of ischemic stroke. Stroke 47 : 1632-1639, 2016 https://doi.org/10.1161/STROKEAHA.116.012701
  62. Via AG, Frizziero A, Oliva F : Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J 2 : 154-162, 2012
  63. Wakai T, Sakata H, Narasimhan P, Yoshioka H, Kinouchi H, Chan PH : Transplantation of neural stem cells that overexpress SOD1 enhances amelioration of intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 34 : 441-449, 2014 https://doi.org/10.1038/jcbfm.2013.215
  64. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, et al. : Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39 : 1569-1574, 2008 https://doi.org/10.1161/strokeaha.107.502047
  65. Wang Y, Ji X, Leak RK, Chen F, Cao G : Stem cell therapies in age-related neurodegenerative diseases and stroke. Ageing Res Rev 34 : 39-50, 2017 https://doi.org/10.1016/j.arr.2016.11.002
  66. Wang Z, Cui C, Li Q, Zhou S, Fu J, Wang X, et al. : Intracerebral transplantation of foetal neural stem cells improves brain dysfunction induced by intracerebral haemorrhage stroke in mice. J Cell Mol Med 15 : 2624-2633, 2011 https://doi.org/10.1111/j.1582-4934.2011.01259.x
  67. Xie J, Wang B, Wang L, Dong F, Bai G, Liu Y : Intracerebral and intravenous transplantation represents a favorable approach for application of human umbilical cord mesenchymal stromal cells in intracerebral hemorrhage rats. Med Sci Monit 22 : 3552-3561, 2016 https://doi.org/10.12659/MSM.900512
  68. Xiong L, Sun L, Zhang Y, Peng J, Yan J, Liu X : Exosomes from bone marrow mesenchymal stem cells can alleviate early brain injury after subarachnoid hemorrhage through miRNA129-5p-HMGB1 pathway. Stem Cells Dev 29 : 212-221, 2020 https://doi.org/10.1089/scd.2019.0206
  69. Zhang H, Wang Y, Lv Q, Gao J, Hu L, He Z : MicroRNA-21 overexpression promotes the neuroprotective efficacy of mesenchymal stem cells for treatment of intracerebral hemorrhage. Front Neurol 9 : 931, 2018 https://doi.org/10.3389/fneur.2018.00931
  70. Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, et al. : Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 10 : 106, 2013 https://doi.org/10.1186/1742-2094-10-106
  71. Zhang Y, Deng H, Hu Y, Pan C, Wu G, Li Q, et al. : Adipose-derived mesenchymal stem cells stereotactic transplantation alleviate brain edema from intracerebral hemorrhage. J Cell Biochem 120 : 14372-14382, 2019 https://doi.org/10.1002/jcb.28693
  72. Zhao H, Li Y, Chen L, Shen C, Xiao Z, Xu R, et al. : HucMSCs-derived miR-206-knockdown exosomes contribute to neuroprotection in subarachnoid hemorrhage induced early brain injury by targeting BDNF. Neuroscience 417 : 11-23, 2019 https://doi.org/10.1016/j.neuroscience.2019.07.051