DOI QR코드

DOI QR Code

Effects of Different Frequency on Muscle Function of the Thigh in Patients with Degenerative Knee Arthritis during the Functional Electrical Stimulation

FES 치료 시 자극 주파수 차이가 퇴행성 슬관절염 환자의 대퇴근 기능에 미치는 영향

  • Woen-Sik, Chae (Department of Physical Education, Kyungpook National University) ;
  • Jae-Hu, Jung (Department of Physical Education, Kyungpook National University)
  • Received : 2022.12.11
  • Accepted : 2022.12.29
  • Published : 2022.12.31

Abstract

Objective: The purpose of this study was to investigate the effects of different frequency on muscle function of the thigh in patients with degenerative knee arthritis during the functional electrical stimulation (FES). Method: For this study, 16 male participants over 65 who patients with degenerative knee arthritis were recruited as research participants. In this research, isokinetic muscular function, EMG, and joint position sensation were performed after FES treatment was applied for three conditions (FES 20, FES 50, and Without FES). For each dependent variable, one-way ANOVA with repeated measures was to determine whether there were significant differences among three different conditions (p<.05). When a significant difference was found, post hoc analyses were performed by using the contrast procedure. Results: When compared to FES 50 and without FES, FES 20 causes significant increase in isometric knee extension strength. No significant differences were found in EMG values across different EMS conditions. Conclusion: The present study examined isokinetic muscular function, EMG, and joint position sensation in order to investigate the effects of different frequency muscle function of knee extensors during the functional electrical stimulation. The results of this study showed that FES with 20 Hz frequency had positive effect on knee extensor. Based on the findings of the present study, FES with lower frequency may help the performer to focus on developing strength in knee extensor muscles.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2018S1A5A2A01038478).

References

  1. Alley, K. A. & Thompson, L. V. (1997). Influence of simulated bed rest and intermittent weight bearing on single skeletal muscle fiber function in aged rats. Archives of Physical Medicine and Rehabilitation, 78(1), 19-25. https://doi.org/10.1016/S0003-9993(97)90004-6
  2. Baker, S. N., Spinks, R., Jackson, A. & Lemon, R. N. (2001). Synchronization in monkey motor cortex during a precision grip task. I. Task-dependent modulation in single-unit synchrony. Journal of Neurophysiology, 85(2), 869-885. https://doi.org/10.1152/jn.2001.85.2.869
  3. Bily, W., Trimmel, L., Modlin, M., Kaider, A. & Kern, H. (2008). Training program and additional electric muscle stimulation for patellofemoral pain syndrome: a pilot study. Archives of Physical Medicine and Rehabilitation, 89(7), 1230-1236. https://doi.org/10.1016/j.apmr.2007.10.048
  4. Chae, J., Fang, Z. P., Walker, M. & Pourmehdi, S. (2001). Intramuscular electromyographically controlled neuromuscular electrical stimulation for upper limb recovery in chronic hemiplegia. American Journal of Physical Medicine & Rehabilitation, 80(12), 935-941. https://doi.org/10.1097/00002060-200112000-00011
  5. Chekanov, V., Rayel, R., Krum, D., Alwan, I., Hare, J., Bajwa, T. & Akhtare, M. (2002). Electrical stimulation promotes angiogenesis in a rabbit hind-limb ischemia model. Vascular and Endovascular Surgery, 36(5), 357-366. https://doi.org/10.1177/153857440203600505
  6. Cooper, R. L., Taylor, N. F. & Feller, J. A. (2005). A randomised controlled trial of proprioceptive and balance training after surgical reconstruction of the anterior cruciate ligament. Research in Sports Medicine, 13(3), 217-230.
  7. Crameri, R. M., Weston, A., Climstein, M., Davis, G. M. & Sutton, J. R. (2002). Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scandinavian Journal of Medicine & Science in Sports, 12(5), 316-322. https://doi.org/10.1034/j.1600-0838.2002.20106.x
  8. Dekker, J., Tola, P., Aufdemkampe, G. & Winckers, M. (1993). Negative affect, pain and disability in osteoarthritis patients: the mediating role of muscle weakness. Behaviour Research and Therapy, 31(2), 203-206. https://doi.org/10.1016/0005-7967(93)90073-4
  9. Doucet, B. M., Lam, A. & Griffin, L. (2012). Neuromuscular electrical stimulation for skeletal muscle function. Yale Journal of Biology and Medicine, 85(2), 201-215.
  10. Fisher, K. M., Zaaimi, B., Williams, T. L., Baker, S. N. & Baker, M. R. (2012). Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease. Brain, 135(9), 2849-2864. https://doi.org/10.1093/brain/aws150
  11. Gaines, J. M., Metter, E. J. & Talbot, L. A. (2004). The effect of neuromuscular electrical stimulation on arthritis knee pain in older adults with osteoarthritis of the knee. Applied Nursing Research, 17(3), 201-206. https://doi.org/10.1016/j.apnr.2004.06.004
  12. Granat, M. H., Ferguson, A. C. B., Andrews, B. J. & Delargy, M. (1993). The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury-observed benefits during gait studies. Spinal Cord, 31(4), 207-215. https://doi.org/10.1038/sc.1993.39
  13. Kaplan, R. E., Czyrny, J. J., Fung, T. S., Unsworth, J. D. & Hirsh, J. (2002). Electrical foot stimulation and implications for the prevention of venous thromboembolic disease. Thrombosis and Haemostasis, 88(2), 200-204. https://doi.org/10.1055/s-0037-1613187
  14. Kellgren, J. H. & Lawrence, J. (1957). Radiological assessment of osteoarthrosis. Annals of the Rheumatic Diseases, 16(4), 494-502. https://doi.org/10.1136/ard.16.4.494
  15. Lake, D. A. (1992). Neuromuscular electrical stimulation. Sports Medicine, 13(5), 320-336. https://doi.org/10.2165/00007256-199213050-00003
  16. Lin, Z. & Yan, T. (2011). Long-term effectiveness of neuromuscular electrical stimulation for promoting motor recovery of the upper extremity after stroke. Journal of Rehabilitation Medicine, 43(6), 506-510. https://doi.org/10.2340/16501977-0807
  17. Lorentzen, J. S., Petersen, M. M., Brot, C. & Madsen, O. R. (1999). Early changes in muscle strength after total knee arthroplasty: a 6-month follow-up of 30 knees. Acta Orthopaedica Scandinavica, 70(2), 176-179. https://doi.org/10.3109/17453679909011258
  18. Maffiuletti, N. A., Zory, R., Miotti, D., Pellegrino, M. A., Jubeau, M. & Bottinelli, R. (2006). Neuromuscular adaptations to electrostimulation resistance training. American Journal of Physical Medicine & Rehabilitation, 85(2), 167-175. https://doi.org/10.1097/01.phm.0000197570.03343.18
  19. Manetta, J., Franz, L. H., Moon, C., Perell, K. L. & Fang, M. (2002). Comparison of hip and knee muscle moments in subjects with and without knee pain. Gait & Posture, 16(3), 249-254. https://doi.org/10.1016/S0966-6362(02)00009-7
  20. Mang, C. S., Lagerquist, O. & Collins, D. F. (2010). Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency. Experimental Brain Research, 203(1), 11-20. https://doi.org/10.1007/s00221-010-2202-x
  21. McAlindon, T. E., Cooper, C., Kirwan, J. R. & Dieppe, P. A. (1993). Determinants of disability in osteoarthritis of the knee. Annals of the Rheumatic Diseases, 52(4), 258-262. https://doi.org/10.1136/ard.52.4.258
  22. Mir, S. M., Hadian, M. R., Talebian, S. & Nasseri, N. (2008). Functional assessment of knee joint position sense following anterior cruciate ligament reconstruction. British Journal of Sports Medicine, 42(4), 300-303. https://doi.org/10.1136/bjsm.2007.044875
  23. Mizner, R. L., Petterson, S. C. & Snyder-Mackler, L. (2005). Quadriceps strength and the time course of functional recovery after total knee arthroplasty. Journal of Orthopaedic & Sports Physical Therapy, 35(7), 424-436. https://doi.org/10.2519/jospt.2005.35.7.424
  24. Norton, J. A. & Gorassini, M. A. (2006). Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury. Journal of Neurophysiology, 95(4), 2580-2589. https://doi.org/10.1152/jn.01289.2005
  25. Ogino, M., Shiba, N., Maeda, T., Iwasa, K., Tagawa, Y., Matsuo, S., Nishimura, H., Yamamoto, T., Nagata, K. & Basford, J. R. (2002). MRI quantification of muscle activity after volitional exercise and neuromuscular electrical stimulation. American Journal of Physical Medicine & Rehabilitation, 81(6), 446-451. https://doi.org/10.1097/00002060-200206000-00009
  26. Pekindil, Y., Sarikaya, A., Birtane, M., Pekindil, G. & Salan, A. (2001). 99mTc-sestamibi muscle scintigraphy to assess the response to neuromuscular electrical stimulation of normal quadriceps femoris muscle. Annals of Nuclear Medicine, 15(4), 397-401. https://doi.org/10.1007/BF02988252
  27. Petersen, N. T., Taylor, J. L. & Gandevia, S. C. (2002). The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii. The Journal of Physiology, 544(1), 277-284. https://doi.org/10.1113/jphysiol.2002.024539
  28. Reyes, A., Laine, C. M., Kutch, J. J. & Valero-Cuevas, F. J. (2017). Beta band corticomuscular drive reflects muscle coordination strategies. Frontiers in Computational Neuroscience, 11, 17.
  29. Robon, M. J., Perell, K. L., Fang, M. & Guererro, E. (2000). The relationship between ankle plantar flexor muscle moments and knee compressive forces in subjects with and without pain. Clinical Biomechanics, 15(7), 522-527.
  30. Romero, J. A., Sanford, T. L., Schroeder, R. V. & Fahey, T. D. (1981). The effects of electrical stimulation of normal quadriceps on strength and girth. Medicine and Science in Sports and Exercise, 14(3), 194-197.
  31. Roopun, A. K., Middleton, S. J., Cunningham, M. O., LeBeau, F. E., Bibbig, A., Whittington, M. A. & Traub, R. D. (2006). A beta2-frequency (20~30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proceedings of the National Academy of Sciences, 103(42), 15646-15650. https://doi.org/10.1073/pnas.0607443103
  32. Stevens, J. E., Mizner, R. L. & Snyder-Mackler, L. (2003). Quadriceps strength and volitional activation before and after total knee arthroplasty for osteoarthritis. Journal of Orthopaedic Research, 21(5), 775-779. https://doi.org/10.1016/S0736-0266(03)00052-4
  33. Stevens, J. E., Mizner, R. L. & Snyder-Mackler, L. (2004). Neuromuscular electrical stimulation for quadriceps muscle strengthening after bilateral total knee arthroplasty: a case series. Journal of Orthopaedic & Sports Physical Therapy, 34(1), 21-29. https://doi.org/10.2519/jospt.2004.34.1.21
  34. Syed, I. Y. & Davis, B. L. (2000). Obesity and osteoarthritis of the knee: hypotheses concerning the relationship between ground reaction forces and quadriceps fatigue in long-duration walking. Medical Hypotheses, 54(2), 182-185.
  35. Talbot, L. A., Gaines, J. M., Ling, S. M. & Metter, E. J. (2003). A home-based protocol of electrical muscle stimulation for quadriceps muscle strength in older adults with osteoarthritis of the knee. The Journal of Rheumatology, 30(7), 1571-1578.
  36. U. S. Department of Health and Human Service. (1993). Selected topics in surface electromyography for use in the occupational setting: expert perspectives. (DHHS Publication No. 91-100). Washington, DC: U.S. Government Printing Office.
  37. Vanderthommen, M., Depresseux, J. C., Dauchat, L., Degueldre, C., Croisier, J. L. & Crielaard, J. M. (2002). Blood flow variation in human muscle during electrically stimulated exercise bouts. Archives of Physical Medicine and Rehabilitation, 83(7), 936-941. https://doi.org/10.1053/apmr.2002.33226
  38. Vanderthommen, M. & Duchateau, J. (2007). Electrical stimulation as a modality to improve performance of the neuromuscular system. Exercise and Sport Sciences Reviews, 35(4), 180-185. https://doi.org/10.1097/jes.0b013e318156e785
  39. Vaz, M. A., Baroni, B. M., Geremia, J. M., Lanferdini, F. J., Mayer, A., Arampatzis, A. & Herzog, W. (2013). Neuromuscular electrical stimulation (NMES) reduces structural and functional losses of quadriceps muscle and improves health status in patients with knee osteoarthritis. Journal of Orthopaedic Research, 31(4), 511-516. https://doi.org/10.1002/jor.22264