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THE LENGTH-BIASED POWERED INVERSE RAYLEIGH
DISTRIBUTION WITH APPLICATIONS†
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Abstract. This article introduces a new distribution called length-biased
powered inverse Rayleigh distribution. Some of its statistical properties are
derived. Maximum likelihood procedure is applied to report the point and
interval estimations of all model parameters. The proposed distribution is
also applied to two real data sets for illustrative purposes.
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1. Introduction

One of the most frequently used distribution in probability and reliability
theory is the Rayleigh distribution. The Rayleigh distribution was basically
applied in the fields of optics and acoustics, [25]. It is originated from two
parameter Weibull distribution. It plays a pivotal role in analyzing lifetime
data and modeling such as life testing studies, diagnostic imaging, theory of
communication, physical sciences, oceanography, project effort loading modeling,
applied statistics and clinical research.
The inverse Rayleigh distribution, (IRD), was introduced by Trayer [31]. It
is an important model for lifetime analysis. The maximum likelihood of its
scale parameter are studied by Voda [32]. In recent years, several extensions
of probability distributions have been made to increase its applicability and
flexibility.
The power transformation (PT) technique has been first introduced by Box and
Cox [5]. The PT technique is develop new distributions from well-known distri-
butions by adding a new parameter. A new parameter gives several desirable
properties and offers a more flexible model. The PT technique has been used in
many statistical aspects.
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It can be shown that, the random variable (r.v.), X = 1/T has an inverse
Rayleigh distribution, if T has a Rayleigh distribution. Nashaat [21] introduced
the powered inverse Rayleigh distribution (PIRD) through the powered trans-
formation as follow

x = t
1
α , where α > 0, t = xα, dt = αxα−1dx.

Then probability density function (pdf) of two parameter PIRD will be

f(x;α, θ) =
2α

θx2α+1
exp

{
− 1

θx2α

}
, α, θ, x > 0, (1)

where α, θ are shape and scale parameters. Clearly when α = 1, we get one
parameter IRD. The corresponding cumulative distribution function (cdf) of (1)
is,

F (x;α, θ) = exp

{
− 1

θx2α

}
, α, θ, x > 0, (2)

The general formula of non-central moments is given by

µ
′

r = E[Xr] =

(
1

θ

) 1
2α

Γ
(
1− r

2α

)
, r < 2α. (3)

The reset of the paper can be organized as follows. The length–biased pow-
ered inverse Rayleigh distribution (LBPIRD) is introduced in Section 2. The
statistical properties of LBPIRD are addressed in Section 3. The parameter es-
timation of the model are studied in Section 4. Some applications and numerical
results are presented in Sections 5. A brief conclusion is introduced in Section
6.

2. The Length-Biased Powered Inverse Rayleigh Distribution

The statistical insight of length-biased distributions was analyzed by Cox
[6] in relation to renewal theory. To establish the relationships between the
original distributions and their length-biased forms, numerous works are done,
see [1, 2, 3, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29],
and cited references therein.

Let X be a r.v. of a PIRD with pdf f(x), then g(x) = xf(x)
E(X) is a pdf of

LBPIRD(α, θ) is given by,

g(x) =
2αθ

1
2α−1

Γ
(
1− 1

2α

)x−2α exp

{
−1

θ
x−2α

}
, x > 0, (4)

where θ > 0 and α > 1
2 .

The cdf of LBPIRD can be obtained as follows

G(x) =
1

Γ
(
1− 1

2α

) γ (1− 1

2α
,
1

θ
x−2α

)
. (5)
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Where γ(a, x) is the incomplete gamma function,

γ(a, x) =

∫ ∞

x

ta−1e−tdt.

The reliability function (rf) is given by

R(x) = P (X > x) = 1− 1

Γ
(
1− 1

2α

)γ (1− 1

2α
,
1

θ
x−2α

)
. (6)

The hazard rate function (hrf) is

h(x) =
g(x)

R(x)
=

2αθ
1
2α−1x−2α exp

{
− 1
θx

−2α
)

Γ
(
1− 1

2α

)
− γ

(
1− 1

2α ,
1
θx

−2α
) . (7)

Figures 1 – 4 display the pdf, cdf, rf and hrf of LBPIRD for some values of α
and θ, respectively.

Figure 1. The pdf of the LBPIRD(α, θ).

Figure 2. The cdf of the LBPIRD(α, θ).
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Figure 3. The rf of the LBPIRD(α, θ).

Figure 4. The hrf of the LBPIRD(α, θ).

We can conclude that: The shape of the LBPIRD is unimodal and positively
skewed, see Figure 1. Also from Figure 4, it can be shown that the hazard rate
is increasing on (0, x0), and then decreasing on (x0,∞).

3. Statistical Properties

Some important statistical properties of LBPIRD are obtained in this section.
The moment generating function (MGF), and Rényi and Tsallis’s entropies are
also presented. The following theorem discussed the moments for the LBPIRD.

3.1. Moments and moment generating function.

Theorem 3.1. The r-th moments for LBPIR (α, θ) distribution is,

µ
′

r(LBPIRD) =
Γ
(
1− r+1

2α

)
Γ
(
1− 1

2α

) , 2α > r + 1. (8)
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Proof. The rth moment is obtained by the following formula,

µ
′

r(LBPIRD) = E[Xr] =

∫ ∞

−∞
xrg(x)dx =

∫ ∞

−∞
xr
xf(x)

E(X)
dx

=

∫ ∞

−∞

xr+1f(x)

E(X)
dx =

[
µ

′

r+1

µ
′
1

]
PRID

. (9)

Substituting from (3) into (9), then

µ
′

r(LBPIRD) =
Γ
(
1− r+1

2α

)
Γ
(
1− 1

2α

) .
The proof is completed. �

From Theorem 3.1, we can compute the mean and variance for the LBPIR
distribution, as follows.

E(X) = µ
′

1(LBPIRD) =
Γ
(
1− 1

α

)
Γ
(
1− 1

2α

) ,
and

V ar(X) = µ
′

2(LBPIRD) − [µ
′

1(LBPIRD)]
2 =

Γ
(
1− 3

2α

)
Γ
(
1− 1

2α

) − [ Γ
(
1− 1

α

)
Γ
(
1− 1

2α

)]2 .
Using (9), the skewness and kurtosis can be calculated by the following formulas.

sk = E

[(
X − E(X)

σ

)3
]
=
µ

′

3 − 2µ
′

2µ
′

1 − µ
′3

1(
µ

′
2 − µ

′2
1

)3/2 ,

and

ku = E

[(
X − E(X)

σ

)4
]
=
µ

′

4 − 3µ
′

3µ
′

1 + 6µ
′

2µ
′2

1 − 3µ
′4

1

(µ
′
2 − µ

′2
1 )

2
.

The mode for the LBPIR distribution can be calculated by differentiating the
natural log of pdf and equating to zero. From (4), the natural log for pdf is

ln(g(x)) = ln(2αθ
1
2α−1)− ln Γ

(
1− 1

2α

)
− 2α ln(x)− 1

θx2α
.

The first derivatives for ln g(x), with respect to x, is

∂

∂x
ln g(x) = −2α

x
+

2α

θx2α+1
= − 2α

θx2α+1
(θx2α − 1) = 0,

then the critical value is

θx2α − 1 = 0 =⇒ x =

(
1

θ

) 1
2α

.
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By using the second derivatives test, the second derivatives is

∂2

∂x2
ln g(x) =

2α

x2
− 2α(2α+ 1)

θx2α+2
=

2α

θx2

[
1− 2α+ 1

θx2α

]
= 0.

At x =
(
1
θ

) 1
2α , then[
∂2

∂x2
ln g(x)

]
x=( 1

θ )
1/2α

=
2α

x2
[1− (2α+ 1)] =

2α

x2
[−2α] < 0.

Then the pdf for LBPIR distribution has the maximum value at x =
(
1
θ

) 1
2α .

Therefore, the mode for LBPIR distribution is
(
1
θ

) 1
2α .

Theorem 3.2. The MGF for the LBPIR distribution is given by

MX(t) =

∞∑
r=0

Γ
(
1− (r+1)

2α

)
Γ
(
1− 1

2α

) tr

r!
. (10)

Proof. The MGF is obtained by the following formula,

MX(t) = E[eXt] =

∫ ∞

−∞
extg(x)dx =

∫ ∞

0

ext
xf(x)

E(X)
dx.

By using the expansion for the exponential distribution ext =
∑∞
r=0

(xt)r

r! , then

MX(t) =

∞∑
r=0

∫ ∞

−∞

xr+1f(x)

E(X)

tr

r!
dx =

∞∑
r=0

[
µ

′

r+1

µ
′
1

]
PRID

tr

r!
. (11)

Substituting from (3) into (11), then

MX(t) =

∞∑
r=0

Γ
(
1− r+1

2α

)
Γ
(
1− 1

2α

) tr
r!
.

This completes the proof. �

The following table shows some statistical measures for LBPIR distribution.
From Table 1,
(1) the LBPIRD is positive skewness and has unimodal.
(2) The mean, mode, variance, skewness and kurtosis are decreasing when

α is increasing.

Theorem 3.3. The characteristic function for the LBPIRD can be obtained as
follows

ϕX(t) =

∞∑
r=0

Γ
(
1− r+1

2α

)
Γ
(
1− 1

2α

) (it)r

r!
. (12)



The Length-Biased Powered Inverse Rayleigh Distribution with Applications 7

Table 1. The statistical measures for LBPIRD(α, θ), when θ = 0.5.

α Mean Mode Var(X) Sk Ku
3.0 1.200 1.122 0.131 3.685 51.656
3.5 1.154 1.104 0.078 2.917 26.259
4.0 1.125 1.091 0.052 2.516 18.519
4.5 1.104 1.080 0.037 2.266 14.873
5.0 1.089 1.072 0.028 2.095 12.777
5.5 1.078 1.065 0.022 1.970 11.425
6.0 1.069 1.059 0.017 1.874 10.483
6.5 1.062 1.055 0.014 1.799 9.792
7.0 1.056 1.051 0.012 1.737 9.263
7.5 1.052 1.047 0.010 1.687 8.846
8.0 1.048 1.044 0.0086 1.644 8.510

Proof. we have

ϕX(t) = E[eiXt] =

∫ ∞

−∞
eixtg(x)dx =

∫ ∞

0

eixt
xf(x)

E(X)
dx.

By using the expansion for the exponential distribution eixt =
∑∞
r=0

(ixt)r

r! , then

ϕX(t) =

∞∑
r=0

∫ ∞

−∞

xr+1f(x)

E(X)

(it)r

r!
dx =

∞∑
r=0

[
µ

′

r+1

µ
′
1

]
PRID

(it)r

r!
. (13)

Substituting from (3) into (13), we have

ϕX(t) =

∞∑
r=0

Γ
(
1− r+1

2α

)
Γ
(
1− 1

2α

) (it)r

r!
.

Hence the Theorem 3.3 is proved. �

3.2. Measure of uncertainty. The Rényi and Tsallis entropy from LBPIR
distribution are as follows, see [30].

Rr(X) =
1

1− r
log

∫ ∞

0

fr(x)dx = log

(
2α

r
θ

1
2α

)
− 2α− 1

2α(1− r)
log(r)+log

[
Γ
(
r − 1

2α

)
Γ
(
1− 1

2α

)]
and

Tr(X) =
1

1− r

[∫ ∞

0

fr(x)dx− 1

]
=

1

1− r

(2αθ
1
2α

r

)r−1
Γ
(
r − 1

2α

)
r1−

1
2αΓ

(
1− 1

2α

) − 1

 ,
where r > 2α, r ̸= 1.
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3.3. Inequality measures. Bonferroni and Lorenz curves are defined as fol-
lows.

B(P ) =
1

Pµ

∫ q

0

xf(x)dx, and L(P ) =
1

µ

∫ q

0

xf(x)dx,

where µ = E(X) and q = F−1(p), see Bonferroni [4].
Therefore, Bonferroni and Lorenz curves from LBPIRD are related as

B(P ) =
1

Pθ
1
2αΓ

(
1− 1

α

)γ (1− 1

2α
,
1

θ
q−2α

)
,

and

L(P ) =
1

θ
1
2αΓ

(
1− 1

α

)γ (1− 1

2α
,
1

θ
q−2α

)
.

4. Parameters Estimation

The parameters estimation of the LBPIRD has been discussed. The maximum
likelihood estimation (MLE) based on a complete sample is used.

4.1. Maximum likelihood estimators. Let x1, x2, · · · , xn be a complete
sample of size n from the LBPIRD(α, θ). The likelihood function is given by

L(α, θ|x) =
n∏
i=1

g(xi;α, θ) =

n∏
i=1

2αθ
1
2α−1

Γ
(
1− 1

2α

)x−2α exp
{
−frac1θx−2α

}
.

The log-likelihood function is

ℓ = n ln(2α)+n

(
1

2α
− 1

)
ln(θ)−n ln Γ

(
1− 1

2α

)
−2α

n∑
i=1

ln(xi)−
1

θ

n∑
i=1

x−2α
i .

(14)
Differentiating the above equation with respect to α, θ and setting the derivatives
equal to zero.

∂ℓ

∂α
=

n

α
− n

2α2
ln(θ)− n

2α2
ψ

(
1− 1

2α

)
− 2

n∑
i=1

ln(xi) +
2

θ

n∑
i=1

x−2α
i ln(xi),

(15)
∂ℓ

∂θ
=

n

θ

(
1

2α
− 1

)
+

1

θ2

n∑
i=1

x−2α
i , (16)

where ψ(x) = d
dx ln Γ(x).
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4.2. Asymptotic confidence bounds. Since, we could not derive an analytic
solution to the MLEs, we could not derive explicit confidence intervals for the
parameters. The normal approximation of the sampling distribution of the MLEs
can be used to derive asymptotic intervals of the parameters.
It is known that the MLE of Θ = (α, θ), say Θ̂, approximately follows normal
distribution with mean of Θ and variance covariance V , see [15]. That is, Θ̂ =

(α̂, θ̂) ∼ N2(Θ, V ), where V is given

V =

(
− ∂2ℓ
∂α2 − ∂2ℓ

∂α∂θ

− ∂2ℓ
∂α∂θ − ∂2ℓ

∂θ2

)−1

, (17)

where
∂2ℓ

∂α2
= − n

α2
+

n

α3
ln(θ) +

n

α3
ψ

(
1− 1

2α

)
− n

4α4
ψ

′
(
1− 1

2α

)
−

4

θ

n∑
i=1

x−2α
i [ln(xi)]

2, (18)

∂2ℓ

∂α∂θ
= − n

2α2θ
− 2

θ2

n∑
i=1

x−2α
i ln(xi), (19)

∂2ℓ

∂θ2
= − n

θ2

(
1

2α
− 1

)
− 2

θ3

n∑
i=1

x−2α
i . (20)

A 100(1 − ν)% confidence interval for Θj , j = 1, 2, can be approximated by
Θ̂j ± zν/2SEj(Θ̂j), where zν/2 is the upper 100ν2 th percentile of the standard
normal distribution and SEj(Θ̂j) is the square root of the jth element in the
diagonal of V .

5. Numerical Results

In this section, two real data sets are analyzed to verify the flexibility and
applicability of the LBPIR distribution. The certain analytical measures have
been used to identify the best fit of competitive distribution. In this regard, The
Akaike, Akaike corrected, Bayesian and Hannan–Quinn Information Criterion
values are used to decide the most appropriate once.
Data set 1. The following data consists of 20 observations of patients receiving
an analgesic, [12]: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2,
1.4, 3.0, 1.7, 2.3, 1.6, 2.0.
The MLEs, ℓ, AIC, AICC, BIC and HQIC for the four models, IRD, PIRD,
LBIRD and LBPIRD are presented in Table 2.
From Table 2, LBPIRD has lower AIC, AICC, BIC and HQIC values than other
competitor models. So, we come to an end that LBPIRD leads to better fit over
the IRD, PIRD and LBIRD.
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Table 2. The MLEs, ℓ, AIC, AICC, BIC and HQIC.

Model α̂ θ̂ ℓ AIC AICC BIC HQIC
IRD 0.362 – -692.933 1.388×103 1.388×103 1.389 ×103 1.388×103

PIRD 0.045 0.949 -324.02 652.04 652.393 654.032 652.429
LBIRD – 0.724 -27.931 57.862 57.973 58.858 652.429
LBPIRD 2.333 0.171 -15.458 34.916 35.269 36.908 35.305

The variance-covariance is

V =

(
0.082 −5.214× 10−3

−5.214× 10−3 1.259× 10−3

)
The 95% confidence interval for α and θ are (1.77312, 2.8933) and (0.10099,
0.24008). To show that the likelihood equations have a unique solution, the
profile of the log-likelihood function of α and θ, are plotted in Figure 5.

Figure 5. The profile of the log-likelihood function of α and θ.

Data set 2. The time to failure of turbocharger (103h) of one engine is, [33],
1.6, 8.4, 8.1, 7.9, 3.5, 2, 8.4, 4.8, 3.9, 2.6, 8.5, 5.4, 5, 4.5, 3, 6, 5.6, 5.1, 4.6, 6.5,
6.1, 5.8, 5.3, 7, 6.5, 6.3, 6, 7.3, 7.1, 6.7, 8.7, 7.7, 7.3, 7.3, 8.8, 8, 7.8, 7.7, 9, 8.3.
Table 3, contains the MLEs, ℓ, AIC, AICC, BIC and HQIC for the four models,
IRD, PIRD, LBIRD and LBPIRD.

Table 3. The MLEs, ℓ, AIC, AICC, BIC and HQIC.

Model α̂ θ̂ ℓ AIC AICC BIC HQIC
IRD – 0.047 -8.37×103 1.674×104 1.674×104 1.674×104 1.674×104

PIRD 7.256×10−3 0.975 -3.076×103 6.157×103 6.157×103 6.16×103 6.158×103

LBIRD – 0.093 -109.046 220.092 220.144 221.78 6.158×103

LBPIRD 1.267 0.042 -104.809 213.617 213.78 216.995 214.839

It has been observed that from Table 3, the LBPIRD has smaller values of AIC,
AICC, BIC and HQIC as compared to the IRD, PIRD and LBIRD. Hence, we
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can conclude that our proposed model is the best.
The variance-covariance is

V =

(
5.661× 10−3 −3.115× 10−4

−3.115× 10−4 5.326× 10−5

)
The 95% confidence interval for α and θ are (1.11905, 1.41399) and (0.02751,
0.05612). Figure 6 shows that the likelihood equations have a unique solution
of α and θ.

Figure 6. The profile of the log-likelihood function of α and θ.

6. Conclusion

The proposed distribution performs better as compared to the other model
of Rayleigh distributions.
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