REVERSE EDGE MAGIC LABELING OF CARTESIAN PRODUCT, UNIONS OF BRAIDS AND UNIONS OF TRIANGULAR BELTS

KOTTE AMARANADHA REDDY AND S. SHARIEF BASHA*

Abstract

Reverse edge magic(REM) labeling of the graph $G=(V, E)$ is a bijection of vertices and edges to a set of numbers from the set, defined by $\lambda: V \cup E \rightarrow\{1,2,3, \ldots,|V|+|E|\}$ with the property that for every $x y \in E$, constant k is the weight of equals to a $x y$, that is $\lambda(x y)-[\lambda(x)+\lambda(x)]=k$ for some integer k. We given the construction of REM labeling for the Cartesian Product, Unions of Braids and Unions of Triangular Belts. The Kotzig array used in this paper is the $3 \times(2 r+1)$ kotzig array. we test the konow results about REM labelling that are related to the new results we found.

AMS Mathematics Subject Classification : 05C78.
Key words and phrases : Reverse edge magic labeling, Cartesian product, unions of braids, unions of triangular belts.

1. Introduction

Let G be a simple graph with vertex set V and edge set E. Labeling of G is a bijection $f: V \cup E \rightarrow\{1,2,3, \ldots,|V|+|E|\}$. If $x, y \in V$ and if $e=x y \in E$, then the weight $w(e)$ of the edge e is given by $w(e)=f(e)-\{f(x)+f(y)\}$. The total labeling f is said to be reverse edge-magic (REM) labeling if the weight of each edge is a constant and this constant is called the magic constant of the REM labeling. REM labeling is called reverse super edge magic (RSEM) labeling if the vertices are labeled using the smallest $|V|$ integers. In [2], the result for REM labeling of a complete bipartite graph stated by Kotzig and Rosa. They used the terminology M-valuation, which is now known as EMT labeling and also stated the preservation an EMT labeling for the odd number of copies of certain graphs. They used the term edge-magic to describe a graph that has REM labeling. In [4], The method to expand the result in EMT labeling for some families

[^0]of graphs is introduced by I. Singgih. In, [1] used the results for EMT labeling of 2-regular graphs for the method of generalized by S. Cichacz-Przenioslo et al. In this section, we will describe first the method that later applied to construct a REM labeling. This method preserves the REM (RSEM) properties as we extend the length of cycles, or multiplying the number of paths, by a factor of an odd number. In [3] Marr and Wallis give a definition of a Kotzig array as $d * m$ grid, each row being a permutation of $\{0,1, \ldots, m-1\}$ and each column having the same sum. The Kotzig array used in this paper is the $3 *(2 r+1)$ Kotzig array k that is given as an example after adding each the entry of the array by one:

$k=\left[\begin{array}{cccc}1 & 2 \ldots r+1 r+2 \ldots 2 r & 2 r+1 \\ r+1 & r+2 \ldots 2 r+11 \ldots r-1 & r \\ 2 r+1 & 2 r-1 \ldots 12 r & \ldots 4 & 2\end{array}\right]$
If we write the first two rows of k as a permutation cycle , we have: $\tau=(1, r+1,2 r+1, r, \ldots, 3, r+3,2, r+2)$

The difference between two consecutive elements in τ is equal to τ has taken modulo $(2 r+1)$. Note that τ is a $(2 r+1)$-cycle. Since $(2 r+1)$ is an odd number for every non-negative integer r, then $\operatorname{gcd}(2,2 r+1)=1$, and so we have τ^{2} also a $(2 r+1)$-cycle. This fact plays an important role in preserving the properties of magic labeling of our REM and RSEM labeling as we extend the length of cycles. Let k^{\prime} be the modified k, where we switched the first and second row of k^{\prime} :
$k=\left[\begin{array}{cclcc}r+1 & r+2 \ldots 2 r+11 \ldots r-1 & r \\ 1 & 2 \ldots r+1 r+2 \ldots & \ldots r & 2 r+1 \\ 2 r+1 & 2 r-1 \ldots 12 r & \ldots 4 & 2\end{array}\right]$
It is clear that if we write the first two rows of a permutation cycle, we have τ^{-1}. All Cartesian products $C_{k} \square C_{m}$ that accept a group distance magic labelling by $Z_{k, m}$ are completely characterised by Dalibor Froncek in [10]. Toru Kojima was dividing three sections in [11] and they proved preliminary lemmas in Section 1 to get their results. Section 2 shows that the Cartesian product of paths and $C_{4}-$ free super edge-magic graphs that satisfy certain conditions is $C_{4}-$ supermagic. Section 3 demonstrates that the Cartesian product of paths, as well as some special classes of graphs like caterpillars, cycles, and the disjoint union of two copies of a caterpillar, are C_{4} - super magic. Orientable Z_{n} - distance magic labelings of the Cartesian product of cycles were discovered by Bryan Freyberg and Melissa Keranen in [12]. Also proved even-ordered hypercubes are also orientable Z_{n} - distance magic. In [13], For any positive integer $n \geq 3$ and oddm $\geq 3, \mathrm{C}$. Palanivelu and N . Neela are given the existence of super (a, d) edge antimagic total labelling of cartesian product of path and cycle $P_{m} \square C_{m}$.

In this article, we apply the method to construct a REM labeling for several other families of graphs and section 2, 3, 4 and 5 we estabilished the REM labelling of Cartesian Product $P_{2} \square C_{n}, P_{2} \square P_{n}$, Unions of Braids $m B(n)$ and Unions of Triangular Belts $m T B(\propto)$ by using new concept kotzig array to
develop the multiplying the number of paths and extending the length of cycles. Also we develop the new results for each families of graphs are given by the following sections, we given some examples and describe how the method works.

Theorem 1.1. The complete bipartite graph $K_{p, q}$ exists for all $p, q \geq 1$, form M-valuation.

Theorem 1.2. Say G is a 3-colorable edge-magic graph and H is the union of t disjoint copies of G, t odd. Then H is edge magic.

Theorem 1.3. Let G be a 2-regular graph that has a REM labeling γ. Let G^{\prime} be a 2-regular graph obtained by extending the length of each component of G by an odd factor. Then there exists an REM labeling for G^{\prime} that can be obtained by modifying the REM labeling of G.

Proof. Let γ be a REM labeling for any 2-regular graph G. For every vertex and edge of G, let λ be the labeling obtained by decreasing the original label by 1 , that is, let $\lambda(v)=\gamma(v)-1$ and $\lambda(e)=\gamma(e)-1$. For each cycle C_{n} in G, construct a $n \times 3$ table with entries as follows.

In the first column: For $i=1,2, \ldots, n$, the entry in the $i^{\text {th }}$ row is the matrix $\Lambda=\left[\begin{array}{c}\lambda\left(v_{i}\right) \\ \lambda\left(v_{i+1}\right) \\ \lambda\left(e_{i+1}\right)\end{array}\right]$
In the second column: For $y=1,2,3$ and $z=1,2,3, \ldots,(2 r+1)$ the entry in the $i^{\text {th }}$ row is either k or k^{\prime} depending on the value of i, namely $k=\left[k_{y z}\right]$, if $i \leq\left[\frac{n}{2}\right]+1$, and $k_{y z}^{\prime}$, if $\left[\frac{n}{2}\right]+1<i \leq n$, where $k_{y z}$ denotes the element on the $y^{\text {th }}$ row and $z^{\text {th }}$ column of k.

In the third column: for $i=1,2, \ldots, n$, the entry in the $i^{t h}$ row is the matrix

$$
\Theta_{i}=\left\{\begin{array}{c}
k_{y z}+(2 r+1) \Lambda_{y 1}, \text { if } i \leq\left[\frac{n}{2}\right]+1 \\
k_{y z}^{\prime}+(2 r+1) \Lambda_{y 1}, \text { if }\left[\frac{n}{2}\right]+1<i \leq n
\end{array}\right.
$$

If we multiply the permutation cycles of k and k^{\prime} in the second column, we obtain $\tau^{\frac{n}{2}}+1 \tau^{n-\left(\left[\frac{n}{2}\right]-n+2\right)}=\tau^{2\left[\frac{n}{2}\right]-n+2}$ If n is odd we have $\tau^{(n-1)-n+2}=\tau$ and if n is even we have $\tau^{n-n+2}=\tau^{2}$.

The cycle $C_{n(2 r+1)}$ is obtained by tracking the numbers on Θ. Let $\theta_{y z}^{i}$ denote the elements of Θ_{i} in the $y^{t h}$ row and $z^{t h}$ column. In each Θ_{i}, the two numbers $\theta_{1 z}^{i}$ and $\theta_{2 z}^{i}$ will be the labels of teo adjacent vertices on $C_{n(2 r+1)}$, and $\theta_{3 z}^{i}$ will be the label of the edge they share. For each $i,\left[1 \leq i \leq n\right.$,] each pair of $\theta_{1 z}^{i+1}$ and $\theta_{1 z}^{i+2}$ that are equal denotes the same vertex on $C_{n(2 r+1)}$ and all pairs $\theta_{1 z}^{i}$ and $\theta_{1 z}^{i}$ represent labels of adjacent vertices.

Recall that in the second column, τ is a permutation cycle of length $2 r+1$. Both 1 and 2 are relatively prime to $2 r+1$ for any integer r, so $\tau=\tau^{1}$ and τ^{2} are also permutation cycles of length $2 r+1$. Consequently, we can track the labeling of $C_{n}(2 r+1)$ by connecting these vertices from the third column continuously until we get a full circle of longer length (not stopping until all numbers in the third column are used). Since $1 \leq z \leq 2 r+1$, the result from this process is
the labeled extended cycle $C_{n}(2 r+1)$. For path component of G we create the same table, but since there is no relation between the endpoints, when tracking adjacent vertices in Θ_{i} from $i=1$ until $i=m$, we will not be able to go back to $i=1$. Every time we track adjacent vertices from $i=1$ until $i=m$, we will get one copy of P_{m} instead. Since we have $(2 r+1)$ columns in each Θ_{i} we end up with $(2 r+1)$ copies of P_{m} instead of $P_{m}(2 r+1)$ Combining all extended components, we obtain REM labeling for G^{\prime}.

2. Cartesian Product $P_{2} \square C_{n}$

Theorem 2.1. If n is odd then the graph $P_{m} \square C_{n}$ has REM labeling with magic constant $k=\left(m-\frac{1}{2}\right) n-\frac{1}{2}$.

Theorem 2.2. The generalized prism $P_{m} \square C_{n}$ has an RSEM labeling if n is odd and $m \geq 2$.

Theorem 2.3. The graph $P_{m} \square C_{n}$ does not have an REM labeling for $n \equiv$ $2(\bmod 4)$.

Theorem 2.4. The friendship graph Fr_{n} has an RSEM labeling if and only of $n \in\{3,4,5,7\}$.

Here we give an example of how to provide alternative ways of constructing REM (RSEM) labelings of the Cartesian product $P_{2} \square C_{3}$ by using theorem 1.3. Using this method we can use the known REM (RSEM) labeling of $P_{m} \square C_{n}$ to obtain an REM (RSEM) labeling of $P_{m} \square C_{n(2 r+1)}$.
Example 1: $P_{2} \square C_{3} \rightarrow P_{2} \square C_{9}$
Using above theorems, we have an RSEM labeling for $P_{2} \square C_{3}$ with $k=4$ as shown in Figure 1.

Figure 1: RSEM labeling for $P_{2} \square C_{3}$
The tables are given below.

Λ	κ or κ^{\prime}			θ_{i}		Λ	κ or κ^{\prime}	θ_{i}		
0	1	2	3	1	23	2	$1 \begin{array}{lll}1 & 2\end{array}$	7	8	9
5	2	3	1	17	1816	4	$\begin{array}{llll}2 & 3 & 1\end{array}$	14	15	13
10	1	3	2	31	$33 \quad 32$	11	$1 \begin{array}{lll}1 & 3\end{array}$	34	36	35
				Λ	κ or κ^{\prime}		θ_{i}			
				2	$1 \begin{array}{lll}1 & 2 & 3\end{array}$	4	56			
				4	$2 \begin{array}{lll}2 & 3 & 1\end{array}$		$12 \quad 10$			
				11	$1 \begin{array}{lll}1 & 3 & 2\end{array}$		$30 \quad 29$			

Table 1: Tables for $P_{2} \square C_{3} \rightarrow P_{2} \square C_{9}$ (vertical paths)

Λ	κ or κ^{\prime}		θ_{i}		Λ	κ or κ^{\prime}		θ_{i}	
0	1223	1	2	3	5	$1 \begin{array}{lll}1 & 2\end{array}$	16	17	18
2	$\begin{array}{llll}2 & 3 & 1\end{array}$	8	9	7	4	$\begin{array}{llll}2 & 3 & 1\end{array}$	14	15	13
9	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	28	30	29	14	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	43	45	44
2	$\begin{array}{lll}1 & 2 & 3\end{array}$	7	8	9	4	$1 \begin{array}{lll}1 & 2 & 3\end{array}$	13	14	15
1	$\begin{array}{llll}2 & 3 & 1\end{array}$	5	6	4	3	$\begin{array}{llll}2 & 3 & 1\end{array}$	11	12	10
3	$1 \begin{array}{lll}1 & 3\end{array}$	11	12	10	12	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	37	39	38
1	$\begin{array}{llll}2 & 3 & 1\end{array}$	5	6	4	3	$\begin{array}{llll}2 & 3 & 1\end{array}$	11	12	10
0	$1 \begin{array}{lll}1 & 2 & 3\end{array}$	1	2	3	5	$1 \begin{array}{lll}1 & 2 & 3\end{array}$	16	17	18
6	$\begin{array}{llll}1 & 3 & 2\end{array}$	19	21	20	13	$\begin{array}{llll}1 & 3 & 2\end{array}$	40	42	41

From the tables we get an RSEM for $P_{2} \square C_{9}$ with $k=13$ as shown in Figure 2

Figure 2: RSEM labeling for $P_{2} \square C_{9}$
All results for REM labelings of $P_{m} \square C_{n}$ for odd values of n are already published. In this paper we proved only an alternative way to find such REM labelings of $P_{m} \square C_{n(2 r+1)}$ from the known labelings of $P_{m} \square C_{n}$ for any positive r.
3. Cartesian Product $P_{2} \square P_{n}$

Theorem 3.1. If n is odd then the graph $P_{2} \square P_{n}$ has an REM labeling with magic constant $k=n+1$.

Theorem 3.2. If n is odd then the ladder $L_{n} \cong P_{2} \square P_{n}$ has an RSEM labeling with magic constant $k=k+1$.

Unsurprisingly, when we apply theorem 1.3 to the graph $P_{2} \square P_{n}$ it will multiply the number of the ladders instead of extending its length. We can obtain the RSEM labeling of $m\left(P_{2} \square P_{n}\right)$ for any odd values of m as we explain in the following example.

Example 2: $\quad P_{2} \square P_{5} \rightarrow m\left(P_{2} \square P_{5}\right)$
RSEM labeling of $P_{2} \square P_{5}$ with $k=6$ is given as shown in Figure 3.

Figure 3: RSEM labeling for $P_{2} \square P_{5}$
Tables for two P_{5} are

Λ	κ or κ^{\prime}	θ_{i}			Λ	κ or κ^{\prime}			θ_{i}		
0	123	1	2	3	7	1	2	3	22	23	24
3	$\begin{array}{llll}2 & 3 & 1\end{array}$	11	12	10	5	2	3	1	17	18	16
10	$\begin{array}{lll}1 & 3 & 2\end{array}$	31	33	32	19	1	3	2	58	60	59
3	$\begin{array}{lll}1 & 2 & 3\end{array}$	10	11	12	5	1	2	3	16	17	18
1	$\begin{array}{llll}2 & 3 & 1\end{array}$	5	6	4	8	2	3	1	26	27	25
11	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	34	36	35	20	1	3	2	61	63	62
1	$\begin{array}{lll}1 & 2 & 3\end{array}$	4	5	6	8	1	2	3	25	26	27
4	$\begin{array}{llll}2 & 3 & 1\end{array}$	14	15	13	6	2	3	1	20	21	19
12	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	37	39	38	21	1	3	2	64	66	65
4	$\begin{array}{llll}2 & 3 & 1\end{array}$	14	15	13	6	2	3	1	20	21	19
2	$1 \begin{array}{lll}1 & 2 & 3\end{array}$	7	8	9	9	1	2	3	28	29	30
13	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	40	42	41	22	1	3	2	67	69	68

Table 3: Tables for $P_{2} \square P_{5} \rightarrow m\left(P_{2} \square P_{5}\right)$ for P_{5}
Tables for five P_{2} are

Λ	κ or κ^{\prime}			θ_{i}		
0	1	2	3	1	2	3
7	2	3	1	23	24	22
14	1	3	2	43	45	44

Λ	κ or κ^{\prime}				θ_{i}	
2	1	2	3	10	11	12
5	2	3	1	17	18	16
15	1	3	2	46	48	47
Λ	κ or κ^{\prime}				θ_{i}	
1	1	2	3	4	5	6
8	2	3	1	26	27	25
16	3	1	2	51	49	50
Λ	κ	or	κ^{\prime}		θ_{i}	
4	1	2	3	13	14	15
6	2	3	1	20	21	19
19	1	3	2	52	54	53
Λ	κ	or κ^{\prime}			θ_{i}	
2	1	2	3	7	8	9
9	2	3	1	29	30	28
18	1	3	2	55	57	56
Tables for	P_{2}					

Table 4: Tables for $P_{2} \square P_{5} \rightarrow m\left(P_{2} \square P_{5}\right)$ for P_{2}
From the tables we get RSEM for $P_{2} \square P_{5}$ with $k=19$ as shown in Figure 4.

Figure 4: RSEM labeling for $3\left(P_{2} \square P_{5}\right)$
Hence we can summarize our new result in Theorem 3.3.

Theorem 3.3. For any odd values of m and n, the graph $m\left(P_{2} \square P_{n}\right)$ has an RSEM labeling with $k=m(n+1)+1$.

Proof. The result follows from applying theorem 1.3 to result from Theorem 3.1 and 3.2 Performed on Friendship Graph $F r_{n}$ to RSEM labelings of friendship graphs, we obtain RSEM labeling for a new family of graph. To see how the method works we include the example below:

Example 3: From $F r_{3}$ using factor $(2 r+1)=3$
RSEM labeling of $F r_{3}$ with $k=4$, given as shown in Figure 5 .

Figure 5: RSEM labeling for Fr_{3}
For the tables we treat each triangles in $F r_{n}$ as a cycle C_{3} and make separate table for each cycle.

Λ	κ or κ^{\prime}			θ_{i}		
3	1	2	3	10	11	12
0	2	3	1	2	3	1
8	1	3	2	25	27	26
0	1	2	3	1	2	3
2	2	3	1	8	9	7
7	1	3	2	22	24	23
2	2	3	1	8	9	7
3	1	2	3	10	11	12
10	1	3	2	31	33	32

Λ	κ or κ^{\prime}	θ_{i}	Λ	κ or κ^{\prime}		θ_{i}
3	123	$\begin{array}{llll}10 & 11 & 12\end{array}$	3	123	10	1112
6	$2 \quad 31$	$\begin{array}{llll}20 & 21 & 19\end{array}$	5	$2 \quad 31$	17	1816
14	$1 \begin{array}{lll}1 & 3\end{array}$	$\begin{array}{llll}43 & 45 & 44\end{array}$	13	$1 \begin{array}{lll}1 & 3\end{array}$	40	$42 \quad 41$
6	$\begin{array}{lll}1 & 2 & 3\end{array}$	$\begin{array}{llll}19 & 20 & 21\end{array}$	5	$\begin{array}{lll}1 & 2 & 3\end{array}$	16	1718
4	$2 \begin{array}{lll}2 & 3\end{array}$	$\begin{array}{lll}14 & 15 & 13\end{array}$	1	$2 \quad 31$	5	$6 \quad 4$
15	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	$\begin{array}{llll}46 & 48 & 47\end{array}$	11	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	34	$36 \quad 35$
4	$\begin{array}{llll}2 & 3 & 1\end{array}$	$\begin{array}{lll}14 & 15 & 13\end{array}$	1	$2 \quad 31$	5	64
3	$\begin{array}{lll}1 & 2 & 3\end{array}$	$\begin{array}{llll}10 & 11 & 12\end{array}$	3	$1 \begin{array}{lll}1 & 2 & 3\end{array}$	10	$11 \quad 12$
12	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	$\begin{array}{llll}37 & 39 & 38\end{array}$	9	$\begin{array}{lll}1 & 3 & 2\end{array}$	28	$30 \quad 29$

Table 5: Tables for theorem 1.3 performed on $F r_{3}$ with factor $(2 r+1)=3$
From the tables we get an RSEM for a new graph that shown in Figure 6.

Figure 6: RSEM labeling for new graph from Fr_{3}
Due to limited space in the graph, the edge labels are not included in the figure. They can be found in the tables if required. For convenience let us denote this resulting graph by $C_{t}(n, m)$, where t is the number of vertices in each cycle, m is the number of common vertices where the distance between common vertices is always 2 and n is the number of triangles in the original friendship graph, which will become the number of layers of cycles (from inner to outer cycles) in the resulting graph. This way the graph in Figure 6 is denoted as $C_{9}(3,3)$ It has 3 layers of cycles (inner, middle and outer cycle), that do not share any common edges.

Theorem 3.4. The friendship graph Fr_{n} has an RSEM labeling if and only of $n \in\{3,4,5,7\}$.

Theorem 3.5. The graph $C_{3} m(n, m)$ has an RSEM labeling when m is odd and $n \in\{3,4,5,7\}$.

Proof. Observe that by applying Method 4 to a friendship graph using factor $m=2 r+1$, every triangle in $F r_{n}$ will become a cycle of length $3 m$, so the
number of triangles (n) will become the number of layers in the new graph. Hence from RSEM labelings of all feasible values of n for friendship graph $F r_{n}$ that are stated in Theorem 3.4, we get the result above.

$$
P_{2 n}(+) N_{m} \rightarrow C_{(2 n+1)(2 r+1)}[+] N_{m}
$$

In performing the method to the graph $P_{2 n}(+) N_{m}$, decompose the graph into a cycle with vertices $\left\{v_{1}, v_{2}, \ldots, v_{2 n}, y_{1}\right\}$ and the paths $\left\{v_{1}, y_{1}, v_{2 n}\right\}, i=$ $2,3, \ldots$, m.

Example 4: $P_{2}(+) N_{2} \rightarrow C_{15}[+] 5 N_{1}$
RSEM labeling of $P_{2}(+) N_{2}$ was given as shown in Figure 7.

Figure 7: RSEM labeling for $P_{2}(+) N_{2}$
The tables are

Λ	κ or κ^{\prime}					θ_{i}				
0	1	2	3	4	5	1	2	3	4	5
1	3	4	5	1	2	8	9	10	6	7
4	1	3	5	2	4	21	23	22	22	24
1	1	2	3	4	5	6	7	8	9	10
3	3	4	5	1	2	18	19	20	16	17
7	1	3	5	2	4	36	38	40	37	39
3	3	4	5	1	2	18	19	20	16	17
0	1	2	3	4	5	1	2	3	4	5
6	1	3	5	2	4	31	33	35	32	34

Table 6: Table for $P_{2}(+) N_{2} \rightarrow C_{15}[+] 5 N_{1}$ (cycle)

Λ	κ or κ^{\prime}					θ_{i}				
0	1	2	3	4	5	1	2	3	4	5
2	3	4	5	1	2	13	14	15	11	12
5	1	3	5	2	4	26	28	30	27	29
2	1	2	3	4	5	11	12	13	14	15
3	3	4	5	1	2	18	19	20	16	17
8	1	3	5	2	4	41	43	45	42	44

Table 7: Table for $P_{2}(+) N_{2} \rightarrow C_{15}[+] 5 N_{1}$ (path)
From the tables we get an RSEM for $C_{15}[+] 5 N_{1}$ with $k=12$ as shown below.

Figure 8: RSEM labeling for $C_{15}[+] 5 N_{1}$

4. Unions of Braids $m B(n)$

In this section we apply Method 4 to the result about braid graph $B(n)$ mentioned in this Section.
Example 7: $B(3) \rightarrow 3 B(3)$
RSEM labeling of $B(3)$ with $k=3$ was given as shown in Figure 9

Figure 9. RSEM labeling for $B(3)$
Treat braid $B(3)$ as set of paths, consisting one central path with vertices label $(1,3,5,2,4,6)$ and $2 P_{2}$ with vertices label $(1,4)$ and $(3,6)$. For the second column of our method table, use all κ (not using κ^{\prime} at all). Hence the tables for the method are

Λ	κ or κ^{\prime}		θ_{i}			
0	1	2	3	1	2	3
2	2	3	1	8	9	7
6	1	3	2	19	21	20
2	1	2	3	7	8	9
4	2	3	1	14	15	13
10	1	3	2	31	33	32
4	1	2	3	13	14	15
1	2	3	1	5	6	4
9	1	3	2	28	30	29
1	1	2	3	4	5	6
3	2	3	1	11	12	10
8	1	3	2	25	27	26
3	1	2	3	10	11	12
5	2	3	1	17	18	16
12	1	3	2	37	39	38
0	1	2	3	1	2	3
3	2	3	1	11	12	10
7	1	3	2	22	24	23
2	1	2	3	7	8	9
5	2	3	1	17	18	16
11	1	3	2	34	36	35

Table 8: Tables for $B(3) \rightarrow 3 B(3)$
From the tables we get an RSEM for $3 B(3)$ with $k=10$ as shown in Figure 10.

Figure 10. RSEM labeling for $3 B(3)$
Applying Theorem 1.3 to braid graphs in general, we have the following theorem for unions of braids.

Theorem 4.1. The braid graph $B(n)$ has an RSEM labeling for all $n \geq 3$.
Theorem 4.2. The union of braids $m B(n)$ has an RSEM labeling when m is odd.

Proof. The result follows from applying theorem 1.3 to the graph in Theorem 4.2.

5. Unions of Triangular Belts $m T B(\propto)$

Next we apply Method 4 to the result about triangular belt $T B(\propto)$.
Example 8: $T B\left(\downarrow^{3}\right) \rightarrow 3 T B\left(\downarrow^{3}\right)$
RSEM labeling of $T B\left(\downarrow^{3}\right)$ was given as shown in Figure 11.

Figure 11. RSEM labeling for $T B\left(\downarrow^{3}\right)$
In applying theorem 1.3 to triangular belt $T B\left(\downarrow^{3}\right)$ we treat the graph as a collection of paths, without considering cycles that are contained in it. Thus for the second column of our method table we can also just use. The tables for the method are

Λ	κ or κ^{\prime}	θ_{i}			Λ	κ or κ^{\prime}		θ_{i}		
0	$1 \begin{array}{lll}1 & 2\end{array}$	1	2	3	1	12	3	4	5	6
2	$2 \begin{array}{lll}2 & 3 & 1\end{array}$	8	9	7	3	23	1	11	12	10
9	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	28	30	29	11	13	2	34	36	35
2	$1 \begin{array}{lll}1 & 2 & 3\end{array}$	7	8	9	3	12	3	10	11	12
4	$2 \begin{array}{lll}2 & 3 & 1\end{array}$	14	15	13	5	23	1	17	18	16
13	$1 \begin{array}{lll}1 & 3\end{array}$	40	42	41	15	13	2	46	48	47
4	$1 \begin{array}{lll}1 & 2 & 3\end{array}$	13	14	15	5	12	3	16	17	18
6	$2 \begin{array}{lll}2 & 3 & 1\end{array}$	20	21	19	3	23	1	23	24	22
17	$1 \begin{array}{lll}1 & 3 & 2\end{array}$	52	54	53	19	13	2	58	60	59

Table 9: Tables for $T B\left(\downarrow^{3}\right) \rightarrow 3 T B\left(\downarrow^{3}\right)$ (horizontal paths)

Λ	κ or			κ^{\prime}	θ_{i}			
0	1	2	3	1	2	3		
1	2	3	1	5	6	4		
9	1	3	2	25	27	26		
Λ	κ or κ^{\prime}				θ_{i}			
2	1	2	3	7	8	9		
3	2	3	1	11	12	10		
12	1	3	2	37	39	38		
Λ	κ or κ^{\prime}				θ_{i}			
4	1	2	3	13	14	15		
5	2	3	1	17	18	16		
16	1	3	2	49	51	50		

Λ	κ or κ^{\prime}		θ_{i}			
6	1	2	3	19	20	21
7	2	3	1	23	24	22
20	1	3	2	61	63	62

Table 10: Tables for $T B\left(\downarrow^{3}\right) \rightarrow 3 T B\left(\downarrow^{3}\right)$ (Vertical paths)
For the diagonal paths, define new matrix $\kappa^{\prime \prime}$ as the matrix obtained by switching the second and third rows from κ^{\prime}

$$
\kappa^{\prime \prime}=\left[\begin{array}{ccclc}
1 & 2 \ldots r+1 r+1 \ldots 2 r & 2 r+1 \\
2 r+1 & 2 r \ldots 12 r-1 \ldots 4 & 2 \\
r+1 & r+2 \ldots 2 r+12 r \ldots r-1 & r
\end{array}\right]
$$

Hence the table for the diagonal paths are

Λ	κ or κ^{\prime}			θ_{i}		
0	1	2	3	1	2	3
3	3	1	2	12	10	11
10	2	1	3	32	31	33
Λ	κ	or	κ^{\prime}		θ_{i}	
2	1	2	3	7	8	9
5	3	1	2	18	16	17
14	2	1	3	44	43	45
Λ	κ	or	κ^{\prime}		θ_{i}	
4	1	2	3	13	14	15
7	3	1	2	24	22	23
18	2	1	3	56	55	57

Table 11: Tables for $T B\left(\downarrow^{3}\right) \rightarrow 3 T B\left(\downarrow^{3}\right)$ (diagonal paths)
From the tables we get an RSEM labeling for $3 T B\left(\downarrow^{3}\right)$ with $k=19$.

Figure 12. RSEM labeling for $3 T B\left(\downarrow^{3}\right)$

Applying theorem 1.3 to triangular belts in general, we have the following theorem for union of triangular belts.

Theorem 5.1. For any $\propto \in S^{n}, S=\{\uparrow, \downarrow\}, n>1$, the triangular belt $T B(\propto)$ has an RSEM labeling.

Theorem 5.2. For any $\propto \in S^{n}, S=\{\uparrow, \downarrow\}, n>1$, and odd m, the union of triangular belts $m T B(\propto)$ has an RSEM labeling.

Proof. The result follows from applying Method 4 theorem 1.3 to the graph in Theorem 4.2.

6. Conclusion

In this paper, we given the construction of REM labeling for the Cartesian Product, Unions of Braids and Unions of Triangular Belts. We will describe new method that later applied to construct a REM labeling. This method preserves the REM (RSEM) properties as we extend the length of cycles, or multiplying the number of paths, by a factor of an odd number.

References

1. S. Cichacz-Przeniosło et al., Vertex magic total labelings of 2-regular graphs, Disc. Math. 1 (2017), 3117-3124.
2. A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
3. A.M. Marr and W.D. Wallis, Magic Graphs, second ed., Springer, 2013.
4. I. Singgih, New methods for magic total labelings of graphs, Department of Mathematics and Statistics, University of Minnesota Duluth, 2015.
5. Kotte amaranadha Reddy and S. Sharief Basha, Reverse edge magic lebelling of a cycle with cord, union o cycles and unions of paths, Advances in Mathematics: Scientific Journal 10 (2020), 571-581.
6. R.M. Figuera-Centeno et al., The place of super edgemagic labelings among other classes of labelings, Discrete Math. 231 (2001), 153-168.
7. Sin-Min Lee and Alexander Nien Tsu Lee, On super edgemagic graphs with many odd cycles, Congressus Numerantium https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.6139\&rep=rep1\&typ $\mathrm{e}=\mathrm{pdf}, 1-13$.
8. K. Wijaya and E.T. Baskoro, Labeling the edge-magic total on the product of two graphs, InProc. MIPA Seminar, ITB Bandung Indonesia, 2000.
9. Kotte amaranadha Reddy and S. Sharief Basha, Critical set of caterpillar graph for secret sharing scheme based on reverse super edge magic labeling, International journal of scientific and technology research 11 (2009), 3534-3536.
10. D. Froncek, Group distance magic labeling of Cartesian product of cycles, Australas. J Comb. 55 (2013), 167-174.
11. T. Kojima, On C4-Supermagic labelings of the Cartesian product of paths and graphs, Discrete Mathematics 2 (2013), 164-173.
12. B. Freyberg, M. Keranen, Orientable Z_{n}-distance magic labeling of the Cartesian product of many cycles, Electronic Journal of Graph Theory and Applications 5 (2017), 304-311.
13. C. Palanivelu and N. Neela, On super (a, d)-edge antimagic total labeling of cartesian product graphs, The International journal of analytical and experimental modal analysis 10 (2019), 245-259.
14. M. Slamin et al., Edge-magic total labelings of wheels, fans and friendship graphs, Bull. Inst. Combin. Appl. 35 (2002), 89-98.

Kotte Amaranadha Reddy received M.Sc. from Sri Venkateswara University and doing Ph.D. at Vellore Institute of Technology, Vellore.
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.
e-mail: amar.anil159@gmail.com
S. Sharief Basha received M.Sc. from Sri Venkateswara University, and Ph.D. from Sri Venkateswara University. He is currently a Assistant professor(Sr) at Vellore Institute of Technology, Vellore since 2009. His research interests are discrete mathematics and fazzy graph theory.
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.
e-mail: shariefbasha.s@vit.ac.in

[^0]: Received August 4, 2021. Revised October 24, 2021. Accepted December 7, 2021.

 * Corresponding author.
 © 2022 KSCAM.

