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REVERSE EDGE MAGIC LABELING OF CARTESIAN
PRODUCT, UNIONS OF BRAIDS AND UNIONS OF

TRIANGULAR BELTS

KOTTE AMARANADHA REDDY AND S. SHARIEF BASHA∗

Abstract. Reverse edge magic(REM) labeling of the graph G = (V,E) is
a bijection of vertices and edges to a set of numbers from the set, defined by
λ : V ∪E → {1, 2, 3, ..., |V |+ |E|} with the property that for every xy ∈ E,

constant k is the weight of equals to a xy, that is λ(xy)− [λ(x)+λ(x)] = k

for some integer k. We given the construction of REM labeling for the
Cartesian Product, Unions of Braids and Unions of Triangular Belts. The
Kotzig array used in this paper is the 3× (2r+1) kotzig array. we test the
konow results about REM labelling that are related to the new results we
found.
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1. Introduction

Let G be a simple graph with vertex set V and edge set E. Labeling of G is a
bijection f : V ∪ E → {1, 2, 3, ..., |V |+ |E|}. If x, y ∈ V and if e = xy ∈ E, then
the weight w(e) of the edge e is given by w(e) = f(e)−{f(x)+ f(y)}. The total
labeling f is said to be reverse edge-magic (REM) labeling if the weight of each
edge is a constant and this constant is called the magic constant of the REM
labeling. REM labeling is called reverse super edge magic (RSEM) labeling if
the vertices are labeled using the smallest |V | integers. In [2], the result for REM
labeling of a complete bipartite graph stated by Kotzig and Rosa. They used
the terminology M-valuation, which is now known as EMT labeling and also
stated the preservation an EMT labeling for the odd number of copies of certain
graphs. They used the term edge-magic to describe a graph that has REM label-
ing. In [4], The method to expand the result in EMT labeling for some families
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of graphs is introduced by I. Singgih. In, [1] used the results for EMT labeling
of 2-regular graphs for the method of generalized by S. Cichacz-Przenioslo et al.
In this section, we will describe first the method that later applied to construct
a REM labeling. This method preserves the REM (RSEM) properties as we
extend the length of cycles, or multiplying the number of paths, by a factor of
an odd number. In [3] Marr and Wallis give a definition of a Kotzig array as
d ∗m grid, each row being a permutation of {0, 1, . . . , m− 1} and each column
having the same sum. The Kotzig array used in this paper is the 3 ∗ (2r + 1)
Kotzig array k that is given as an example after adding each the entry of the
array by one:

k =

 1 2 · · · r + 1 r + 2 . . . 2r 2r + 1
r + 1 r + 2 . . . . 2r + 1 1 . . . r − 1 r
2r + 1 2r − 1 . . . 1 2r . . . . 4 2


If we write the first two rows of k as a permutation cycle ,
we have:τ = (1, r + 1, 2r + 1, r, . . ., 3, r + 3, 2, r + 2)

The difference between two consecutive elements in τ is equal to τ has taken
modulo (2r + 1). Note that τ is a (2r + 1)−cycle. Since (2r + 1) is an odd
number for every non-negative integer r, then gcd (2, 2r + 1) = 1, and so we
have τ2 also a (2r + 1)−cycle. This fact plays an important role in preserving
the properties of magic labeling of our REM and RSEM labeling as we extend
the length of cycles. Let k′ be the modified k, where we switched the first and
second row of k′ :

k =

 r + 1 r + 2 . . . . 2r + 1 1 . . . r − 1 r
1 2 . . . . r + 1 r + 2 . . . 2r 2r + 1

2r + 1 2r − 1 . . . . 1 2r . . . . 4 2


It is clear that if we write the first two rows of a permutation cycle, we have τ−1.
All Cartesian products Ck�Cm that accept a group distance magic labelling by
Zk,m are completely characterised by Dalibor Froncek in [10]. Toru Kojima was
dividing three sections in [11] and they proved preliminary lemmas in Section 1
to get their results. Section 2 shows that the Cartesian product of paths and C4−
free super edge-magic graphs that satisfy certain conditions is C4− supermagic.
Section 3 demonstrates that the Cartesian product of paths, as well as some
special classes of graphs like caterpillars, cycles, and the disjoint union of two
copies of a caterpillar, are C4 - super magic. Orientable Zn− distance magic
labelings of the Cartesian product of cycles were discovered by Bryan Freyberg
and Melissa Keranen in [12]. Also proved even-ordered hypercubes are also
orientable Zn− distance magic. In [13], For any positive integer n ≥ 3 and
oddm ≥ 3, C. Palanivelu and N. Neela are given the existence of super (a, d)-
edge antimagic total labelling of cartesian product of path and cycle Pm�Cm.

In this article, we apply the method to construct a REM labeling for several
other families of graphs and section 2, 3, 4 and 5 we estabilished the REM
labelling of Cartesian Product P2 2 Cn, P2 � Pn, Unions of Braids mB (n)
and Unions of Triangular Belts mTB(∝) by using new concept kotzig array to
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develop the multiplying the number of paths and extending the length of cycles.
Also we develop the new results for each families of graphs are given by the
following sections, we given some examples and describe how the method works.

Theorem 1.1. The complete bipartite graph Kp,q exists for all p, q ≥ 1, form
M-valuation.

Theorem 1.2. Say G is a 3-colorable edge-magic graph and H is the union of
t disjoint copies of G, t odd. Then H is edge magic.

Theorem 1.3. Let G be a 2-regular graph that has a REM labeling γ. Let G′

be a 2-regular graph obtained by extending the length of each component of G by
an odd factor. Then there exists an REM labeling for G′ that can be obtained by
modifying the REM labeling of G.

Proof. Let γ be a REM labeling for any 2-regular graph G. For every vertex
and edge of G, let λ be the labeling obtained by decreasing the original label
by 1, that is, let λ(v) = γ(v)− 1 and λ(e) = γ(e)− 1. For each cycle Cn in G,
construct a n× 3 table with entries as follows.

In the first column: For i = 1, 2, . . . , n, the entry in the ith row is the matrix

Λ =

 λ (vi)
λ (vi+1)
λ (ei+1)


In the second column: For y = 1, 2, 3 and z = 1, 2, 3, . . . , (2r + 1) the entry in
the ith row is either k or k′ depending on the value of i, namely k = [kyz] , if
i ≤

[
n
2

]
+ 1, and k′

yz, if
[
n
2

]
+ 1 < i ≤ n, where kyz denotes the element on the

yth row and zth column of k.
In the third column: for i = 1, 2, . . . ., n, the entry in the ith row is the matrix
Θi =

{
kyz + (2r + 1)Λy1, if i ≤

[
n
2

]
+ 1

k′yz + (2r + 1)Λy1, if
[
n
2

]
+ 1 < i ≤ n

If we multiply the permutation cycles of k and k′ in the second column, we
obtain τ

n
2 + 1τn−([

n
2 ]−n+2) = τ2[

n
2 ]−n+2 If n is odd we have τ (n−1)−n+2 = τ

and if n is even we have τn−n+2 = τ2.
The cycle Cn(2r+1) is obtained by tracking the numbers on Θ. Let θiyz denote

the elements of Θi in the yth row and zth column. In each Θi, the two numbers
θi1z and θi2z will be the labels of teo adjacent vertices on Cn(2r+1), and θi3z will
be the label of the edge they share. For each i, [1 ≤ i ≤ n,] each pair of θi+1

1z and
θi+2
1z that are equal denotes the same vertex on Cn(2r+1) and all pairs θi1zand θi1z
represent labels of adjacent vertices.

Recall that in the second column, τ is a permutation cycle of length 2r + 1.
Both 1 and 2 are relatively prime to 2r+1 for any integer r, so τ = τ1 and τ2 are
also permutation cycles of length 2r+1. Consequently, we can track the labeling
of Cn (2r + 1) by connecting these vertices from the third column continuously
until we get a full circle of longer length (not stopping until all numbers in the
third column are used). Since 1 ≤ z ≤ 2r + 1, the result from this process is
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the labeled extended cycle Cn(2r + 1). For path component of G we create the
same table, but since there is no relation between the endpoints, when tracking
adjacent vertices in Θi from i = 1 until i = m, we will not be able to go back
to i = 1. Every time we track adjacent vertices from i = 1 until i = m, we
will get one copy of Pm instead. Since we have (2r + 1) columns in each Θi we
end up with (2r+1) copies of Pm instead of Pm(2r+1) Combining all extended
components, we obtain REM labeling for G′

. �

2. Cartesian Product P2 2 Cn

Theorem 2.1. If n is odd then the graph Pm 2 Cn has REM labeling with magic
constant k =

(
m− 1

2

)
n− 1

2 .

Theorem 2.2. The generalized prism Pm 2 Cn has an RSEM labeling if n is
odd and m ≥ 2.

Theorem 2.3. The graph Pm2Cn does not have an REM labeling for n ≡
2 (mod4).

Theorem 2.4. The friendship graph Frn has an RSEM labeling if and only of
n ∈ {3, 4, 5, 7} .

Here we give an example of how to provide alternative ways of constructing
REM (RSEM) labelings of the Cartesian product P2 � C3 by using theorem 1.3.
Using this method we can use the known REM (RSEM) labeling of Pm� Cn to
obtain an REM (RSEM) labeling of Pm2Cn(2r+1).
Example 1: P2 �C3 → P2�C9

Using above theorems, we have an RSEM labeling for P2�C3 with k = 4 as
shown in Figure 1.

Figure 1: RSEM labeling for P2�C3

The tables are given below.
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Λ κ or κ′ θi
0 1 2 3 1 2 3
5 2 3 1 17 18 16
10 1 3 2 31 33 32

Λ κ or κ′ θi
2 1 2 3 7 8 9
4 2 3 1 14 15 13
11 1 3 2 34 36 35

Λ κ or κ′ θi
2 1 2 3 4 5 6
4 2 3 1 11 12 10
11 1 3 2 28 30 29

Table 1: Tables for P2�C3 → P2�C9 (vertical paths)

Λ κ or κ′ θi
0 1 2 3 1 2 3
2 2 3 1 8 9 7
9 1 3 2 28 30 29
2 1 2 3 7 8 9
1 2 3 1 5 6 4
3 1 3 2 11 12 10
1 2 3 1 5 6 4
0 1 2 3 1 2 3
6 1 3 2 19 21 20

Λ κ or κ′ θi
5 1 2 3 16 17 18
4 2 3 1 14 15 13
14 1 3 2 43 45 44
4 1 2 3 13 14 15
3 2 3 1 11 12 10
12 1 3 2 37 39 38
3 2 3 1 11 12 10
5 1 2 3 16 17 18
13 1 3 2 40 42 41

Table 2: Tables for P2 � C3 → P2 2 C9 (cycles)

From the tables we get an RSEM for P2 �C9 with k = 13 as shown in Figure 2

Figure 2: RSEM labeling for P2�C9

All results for REM labelings of Pm�Cn for odd values of n are already
published. In this paper we proved only an alternative way to find such REM
labelings of Pm�Cn(2r+1) from the known labelings of Pm� Cn for any positive
r.
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3. Cartesian Product P2 � Pn

Theorem 3.1. If n is odd then the graph P2�Pn has an REM labeling with
magic constant k = n+ 1.

Theorem 3.2. If n is odd then the ladder Ln ∼= P2�Pn has an RSEM labeling
with magic constant k = k + 1.

Unsurprisingly, when we apply theorem 1.3 to the graph P22Pn it will mul-
tiply the number of the ladders instead of extending its length. We can obtain
the RSEM labeling of m (P22Pn) for any odd values of m as we explain in the
following example.

Example 2: P2 � P5 → m(P2� P5)
RSEM labeling of P2 � P5 with k = 6 is given as shown in Figure 3.

Figure 3: RSEM labeling for P2�P5

Tables for two P5 are

Λ κ or κ′ θi
0 1 2 3 1 2 3
3 2 3 1 11 12 10
10 1 3 2 31 33 32
3 1 2 3 10 11 12
1 2 3 1 5 6 4
11 1 3 2 34 36 35
1 1 2 3 4 5 6
4 2 3 1 14 15 13
12 1 3 2 37 39 38
4 2 3 1 14 15 13
2 1 2 3 7 8 9
13 1 3 2 40 42 41

Λ κ or κ′ θi
7 1 2 3 22 23 24
5 2 3 1 17 18 16
19 1 3 2 58 60 59
5 1 2 3 16 17 18
8 2 3 1 26 27 25
20 1 3 2 61 63 62
8 1 2 3 25 26 27
6 2 3 1 20 21 19
21 1 3 2 64 66 65
6 2 3 1 20 21 19
9 1 2 3 28 29 30
22 1 3 2 67 69 68

Table 3: Tables for P2�P5 → m(P2�P5) for P5

Tables for five P2 are

Λ κ or κ′ θi
0 1 2 3 1 2 3
7 2 3 1 23 24 22
14 1 3 2 43 45 44
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Λ κ or κ′ θi
2 1 2 3 10 11 12
5 2 3 1 17 18 16
15 1 3 2 46 48 47
Λ κ or κ′ θi
1 1 2 3 4 5 6
8 2 3 1 26 27 25
16 3 1 2 51 49 50
Λ κ or κ′ θi
4 1 2 3 13 14 15
6 2 3 1 20 21 19
19 1 3 2 52 54 53
Λ κ or κ′ θi
2 1 2 3 7 8 9
9 2 3 1 29 30 28
18 1 3 2 55 57 56

Table 4: Tables for P2�P5 → m(P2�P5) for P2

From the tables we get RSEM for P2�P5 with k = 19 as shown in Figure
4.

Figure 4: RSEM labeling for 3(P2�P5)

Hence we can summarize our new result in Theorem 3.3.
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Theorem 3.3. For any odd values of m and n, the graph m(P2�Pn) has an
RSEM labeling with k = m(n+ 1) + 1.

Proof. The result follows from applying theorem 1.3 to result from Theorem 3.1
and 3.2 Performed on Friendship Graph Frn to RSEM labelings of friendship
graphs, we obtain RSEM labeling for a new family of graph. To see how the
method works we include the example below: �

Example 3: From Fr3 using factor (2r + 1) = 3
RSEM labeling of Fr3 with k = 4, given as shown in Figure 5.

Figure 5: RSEM labeling for Fr3

For the tables we treat each triangles in Frnas a cycle C3 and make separate
table for each cycle.

Λ κ or κ′ θi
3 1 2 3 10 11 12
0 2 3 1 2 3 1
8 1 3 2 25 27 26
0 1 2 3 1 2 3
2 2 3 1 8 9 7
7 1 3 2 22 24 23
2 2 3 1 8 9 7
3 1 2 3 10 11 12
10 1 3 2 31 33 32
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Λ κ or κ′ θi
3 1 2 3 10 11 12
6 2 3 1 20 21 19
14 1 3 2 43 45 44
6 1 2 3 19 20 21
4 2 3 1 14 15 13
15 1 3 2 46 48 47
4 2 3 1 14 15 13
3 1 2 3 10 11 12
12 1 3 2 37 39 38

Λ κ or κ′ θi
3 1 2 3 10 11 12
5 2 3 1 17 18 16
13 1 3 2 40 42 41
5 1 2 3 1 6 17 18
1 2 3 1 5 6 4
11 1 3 2 34 36 35
1 2 3 1 5 6 4
3 1 2 3 10 11 12
9 1 3 2 28 30 29

Table 5: Tables for theorem 1.3 performed on Fr3 with factor (2r + 1) = 3

From the tables we get an RSEM for a new graph that shown in Figure 6.

Figure 6: RSEM labeling for new graph from Fr3

Due to limited space in the graph, the edge labels are not included in the
figure. They can be found in the tables if required. For convenience let us
denote this resulting graph by Ct(n,m), where t is the number of vertices in
each cycle, m is the number of common vertices where the distance between
common vertices is always 2 and n is the number of triangles in the original
friendship graph, which will become the number of layers of cycles (from inner
to outer cycles) in the resulting graph. This way the graph in Figure 6 is denoted
as C9(3, 3) It has 3 layers of cycles (inner, middle and outer cycle), that do not
share any common edges.

Theorem 3.4. The friendship graph Frn has an RSEM labeling if and only of
n ∈ {3, 4, 5, 7}.

Theorem 3.5. The graph C3m(n,m) has an RSEM labeling when m is odd and
n ∈ {3, 4, 5, 7}.

Proof. Observe that by applying Method 4 to a friendship graph using factor
m = 2r + 1, every triangle in Frn will become a cycle of length 3m, so the
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number of triangles (n) will become the number of layers in the new graph.
Hence from RSEM labelings of all feasible values of n for friendship graph Frn
that are stated in Theorem 3.4, we get the result above. �

P2n (+)Nm → C(2n+1)(2r+1) [+]Nm
In performing the method to the graph P2n (+)Nm, decompose the graph

into a cycle with vertices {v1, v2, . . . , v2n, y1} and the paths {v1, y1, v2n} , i =
2, 3, . . . ,m.

Example 4: P2 (+)N2→ C15 [+] 5N1

RSEM labeling of P2 (+)N2 was given as shown in Figure 7.

Figure 7: RSEM labeling for P2 (+)N2

The tables are

Λ κ or κ′ θi
0 1 2 3 4 5 1 2 3 4 5
1 3 4 5 1 2 8 9 10 6 7
4 1 3 5 2 4 21 23 22 22 24
1 1 2 3 4 5 6 7 8 9 10
3 3 4 5 1 2 18 19 20 16 17
7 1 3 5 2 4 36 38 40 37 39
3 3 4 5 1 2 18 19 20 16 17
0 1 2 3 4 5 1 2 3 4 5
6 1 3 5 2 4 31 33 35 32 34

Table 6: Table for P2 (+)N2 → C15 [+] 5N1 (cycle)

Λ κ or κ′ θi
0 1 2 3 4 5 1 2 3 4 5
2 3 4 5 1 2 13 14 15 11 12
5 1 3 5 2 4 26 28 30 27 29
2 1 2 3 4 5 11 12 13 14 15
3 3 4 5 1 2 18 19 20 16 17
8 1 3 5 2 4 41 43 45 42 44

Table 7: Table for P2 (+)N2 → C15 [+] 5N1 (path)
From the tables we get an RSEM for C15 [+] 5N1 with k = 12 as shown below.
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Figure 8: RSEM labeling for C15 [+] 5N1

4. Unions of Braids mB (n)

In this section we apply Method 4 to the result about braid graph B(n) men-
tioned in this Section.
Example 7: B (3) → 3B (3)
RSEM labeling of B (3) with k = 3 was given as shown in Figure 9

Figure 9. RSEM labeling for B (3)

Treat braid B (3) as set of paths, consisting one central path with vertices label
(1, 3, 5, 2, 4, 6) and 2P2 with vertices label (1, 4) and (3, 6). For the second col-
umn of our method table, use all κ (not using κ′ at all). Hence the tables for
the method are
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Λ κ or κ′ θi
0 1 2 3 1 2 3
2 2 3 1 8 9 7
6 1 3 2 19 21 20
2 1 2 3 7 8 9
4 2 3 1 14 15 13
10 1 3 2 31 33 32
4 1 2 3 13 14 15
1 2 3 1 5 6 4
9 1 3 2 28 30 29
1 1 2 3 4 5 6
3 2 3 1 11 12 10
8 1 3 2 25 27 26
3 1 2 3 10 11 12
5 2 3 1 17 18 16
12 1 3 2 37 39 38
0 1 2 3 1 2 3
3 2 3 1 11 12 10
7 1 3 2 22 24 23
2 1 2 3 7 8 9
5 2 3 1 17 18 16
11 1 3 2 34 36 35

Table 8: Tables for B (3) → 3B (3)
From the tables we get an RSEM for 3B (3) with k = 10 as shown in Figure 10.

Figure 10. RSEM labeling for 3B (3)

Applying Theorem 1.3 to braid graphs in general, we have the following theorem
for unions of braids.

Theorem 4.1. The braid graph B(n) has an RSEM labeling for all n ≥ 3.

Theorem 4.2. The union of braids mB(n) has an RSEM labeling when m is
odd.

Proof. The result follows from applying theorem 1.3 to the graph in Theorem
4.2.

�
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5. Unions of Triangular Belts mTB(∝)

Next we apply Method 4 to the result about triangular belt TB(∝).
Example 8: TB

(
↓3
)

→ 3TB (↓3)
RSEM labeling of TB

(
↓3
)

was given as shown in Figure 11.

Figure 11. RSEM labeling for TB
(
↓3
)

In applying theorem 1.3 to triangular belt TB
(
↓3
)

we treat the graph as a
collection of paths, without considering cycles that are contained in it. Thus for
the second column of our method table we can also just use . The tables for the
method are

Λ κ or κ′ θi
0 1 2 3 1 2 3
2 2 3 1 8 9 7
9 1 3 2 28 30 29
2 1 2 3 7 8 9
4 2 3 1 14 15 13
13 1 3 2 40 42 41
4 1 2 3 13 14 15
6 2 3 1 20 21 19
17 1 3 2 52 54 53

Λ κ or κ′ θi
1 1 2 3 4 5 6
3 2 3 1 11 12 10
11 1 3 2 34 36 35
3 1 2 3 10 11 12
5 2 3 1 17 18 16
15 1 3 2 46 48 47
5 1 2 3 16 17 18
3 2 3 1 23 24 22
19 1 3 2 58 60 59

Table 9: Tables for TB
(
↓3
)

→ 3TB (↓3) (horizontal paths)

Λ κ or κ′ θi
0 1 2 3 1 2 3
1 2 3 1 5 6 4
9 1 3 2 25 27 26
Λ κ or κ′ θi
2 1 2 3 7 8 9
3 2 3 1 11 12 10
12 1 3 2 37 39 38
Λ κ or κ′ θi
4 1 2 3 13 14 15
5 2 3 1 17 18 16
16 1 3 2 49 51 50
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Λ κ or κ′ θi
6 1 2 3 19 20 21
7 2 3 1 23 24 22
20 1 3 2 61 63 62

Table 10: Tables for TB
(
↓3
)

→ 3TB (↓3) (Vertical paths)

For the diagonal paths, define new matrix κ′ ′ as the matrix obtained by switch-
ing the second and third rows from κ

′

κ
′ ′

=

 1 2 · · · r + 1 r + 1 . . . 2r 2r + 1
2r + 1 2r . . . 1 2r − 1 . . . 4 2
r + 1 r + 2 . . . 2r + 1 2r . . . r − 1 r


Hence the table for the diagonal paths are

Λ κ or κ′ θi
0 1 2 3 1 2 3
3 3 1 2 12 10 11
10 2 1 3 32 31 33
Λ κ or κ′ θi
2 1 2 3 7 8 9
5 3 1 2 18 16 17
14 2 1 3 44 43 45
Λ κ or κ′ θi
4 1 2 3 13 14 15
7 3 1 2 24 22 23
18 2 1 3 56 55 57

Table 11: Tables for TB
(
↓3
)

→ 3TB (↓3) (diagonal paths)
From the tables we get an RSEM labeling for 3TB (↓3) with k = 19.

Figure 12. RSEM labeling for 3TB (↓3)
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Applying theorem 1.3 to triangular belts in general, we have the following the-
orem for union of triangular belts.

Theorem 5.1. For any ∝∈ Sn, S = {↑, ↓} ,n > 1, the triangular belt TB(∝)
has an RSEM labeling.

Theorem 5.2. For any ∝∈ Sn, S = {↑, ↓} ,n > 1, and odd m, the union of
triangular belts mTB(∝) has an RSEM labeling.

Proof. The result follows from applying Method 4 theorem 1.3 to the graph in
Theorem 4.2. �

6. Conclusion

In this paper, we given the construction of REM labeling for the Cartesian
Product, Unions of Braids and Unions of Triangular Belts. We will describe new
method that later applied to construct a REM labeling. This method preserves
the REM (RSEM) properties as we extend the length of cycles, or multiplying
the number of paths, by a factor of an odd number.
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