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ABSTRACT. Given a prime number p and a natural number m not divisible by p, we
propose the problem of finding the smallest number r¢ such that for r > rg, every group
G of order p"m has a non-trivial normal p-subgroup. We prove that we can explicitly
calculate the number 7o in the case where every group of order p"m is solvable for all r,
and we obtain the value of r¢ for a case where m is a product of two primes.

1. Introduction

Throughout this note, p will be a fixed prime number. We use O,(G) to denote
the p-core of G, that is, its largest normal p-subgroup.

We propose the following optimization problem: Given a number m not divisible
by p, find the smallest rg such that every group having order n = p"m, with r > r,
has a nontrivial p-core O,(G). Denote such number 9 by A(p,m). In Theorem
2.1, we will prove that A(p,m) is well-defined for any prime p and number m (with
ptm). In Theorem 2.3 we explicitly determine the value of A(p, m) in the case that
all groups whose order have the form p"m are solvable (for example, if m is prime
or if both p and m are odd). Finally, in Section 3, we calculate A(2,15), a case that
is not covered by the previous theorem.

We remark that the motivation for this research came from the search for exam-
ples of finite groups G such that the Brown complex 8,(G) of nontrivial p-subgroups
of G (see for example [5] for the definition and properties) is connected but not con-
tractible. It is known that 8,(G) is contractible when G has a nontrivial normal
p-subgroup, and Quillen conjectured in [3] that the converse is also true.

2. Theorems

Theorem 2.1. For any prime number p and natural number m such that p { m,
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there is a number A(p, m) such that if r > A(p,m), any group of order p"m has a
non-trivial p-core Op(G).

Proof. Let G be a group of order p"m with O,(G) = 1. Let P be a Sylow p-subgroup
of G. Since the kernel of the action of G on the set of cosets of P is precisely O,(G),
we obtain that G embeds in S,,, and so p" divides (m — 1)!. Hence, if p™ is the
largest power of p dividing ((m-1)!), we obtain that A(p,m) < r¢ + 1. O

For t, ¢ natural numbers, let (¢, q¢) be the product

(2.1) Yt q) = (" —1)(¢"" = 1) (¢ —1)(g— 1),

(note that (¢, ¢q) can also be defined as (t)!4(¢ — 1)!, where (¢)!, is the g-factorial
of t), and if m = q’il q? e qZ’“ is a prime factorization of m, with the ¢; pairwise
distinct and ¢; > 0 for each 4, we let I'(m) = v(t1,q1) - - - ¥(tx, gx). We prove that if
p® is the largest power of p dividing I'(m), then A(p,m) > sg + 1.

Theorem 2.2. Let n = p*m where ptm and s > 0. If p* | T'(m), then there is a
group of order n with O,(G) = 1.

Proof. Let K be the group C}; X+ X C};l’:, that is, a product of elementary abelian
groups, where m = q’il e qZ’“ and qi1,...,q; are distinct primes and C, denotes the
cyclic group of order g. Then I'(m) divides the order of Aut(K'), and hence so does
p®. Let H be a subgroup of Aut(K) of order p*. For every S € H and k € K define
the map Ts: K — K by Tsp(x) =Sz +k. Then G={Ts, | S€ H ke K}isa
subgroup of Sym(K). If we identify H with the subgroup of maps of the form Ts o
and K with the subgroup of maps of the form 77, j, then G is just the semidirect
product of K by H. Hence |G| = n. We have that G acts transitively on K in
a natural fashion, and the stabilizer of 0 € K is H, a p-Sylow subgroup of G.
Hence the stabilizers of points in K are precisely the Sylow subgroups of G, so their
intersection O,(G) contains only the identity K — K, as we wanted to prove. O

The next theorem will show that the lower bound given by Theorem 2.2 is tight
in some cases.

Theorem 2.3. Let n = p*m, where pfm. If G is a group of order n and p* does
not divide T'(m) then either:

1. (Op(G) #1), or
2. (G is not solvable.

Proof. Let G be solvable with order n = p*m and O,(G) = 1. Let F(G) be the Fit-
ting subgroup of G. Consider the map ¢ : G — AutF(G), sending g to ¢4 : F(G) —
F(G) given by conjugation by g. The restriction of ¢ to P, a p-Sylow subgroup of
G, has kernel P N Cq(F(G)). Since Ce(F(G)) < F(G) (Theorem 7.67 from [4]),
and F(G) does not contain elements of order p by our assumption on O,(G), we
have PN Cg(F(G)) = 1 and so P acts faithfully on F(G). If m = ¢}* --- ¢/* is the
prime factorization of m, we have that F(G) is the direct product of the Oy, (G)
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for i =1,---,k. Hence P < Aut(F(G)) = Aut(Og (G)) X - -+ x Aut(Oy, (G)). Let
g € P such that the action induced by ¢4 on [[, Oy, (G)/®(Oy, (G)), is the identity.
Since ¢4 acts on each factor Oy, (G)/®(Oy, (G)) as the identity, then by Theorem
5.1.4 from [2], we have that it acts as the identity on each Oy, (G). By the faithful
action of P on F(G), we have that ¢ = 1. This implies that P acts faithfully on
[L; Og (G)/®(0y, (G)). But then |P| divides the order of the automorphism group
of [[; Oq (G)/®(Oy,(G)), which is a product of elementary abelian groups of re-
spective orders ¢;* with s; < t¢; for all . Hence p® = |P| divides I'(m) O

Corollary 2.4. Let p® be the largest power of p that divides T'(m). If m is prime,
or if both p,m are odd, then A(p,m) =s+ 1.

Proof. By Burnside’s p, g-theorem, and the Odd Order Theorem, we have that all
groups that have order of the form p”m for some r are solvable. Therefore, for all

r > s, by Theorem 2.3 we have that all groups of order p"m have non-trivial p-core.
O

At this moment, we can prove that in some cases, the group constructed in 2.2
is unique.

Theorem 2.5. Let n = p*m where ptm and s > 0. If p* | T'(m), but p* 1 T(m/)
for all proper divisors m' of m, then up to isomorphism, the group constructed in
the proof of Theorem 2.2 is the only solvable group of order n with O,(G) = 1.

Proof. With the notation of the argument of the proof of 2.3, if G is a solvable group
of order n with O,(G) = 1, we must have that |Oy, (G)| = ¢ and ®(0O,,(G)) = 1
for all ¢ in order to satisfy the divisibility conditions. Hence Oy, (G) is elementary
abelian and a ¢;-Sylow subgroup for all ¢, and so G is the semidirect product of a
p-Sylow subgroup P of F(G) = Clt x --- x Clr with F(G), where the action of P
on F(G) by conjugation is faithful. Hence G is isomorphic to the group constructed
in the proof of Theorem 2.3. ]

One case in that we may apply Theorem 2.5 is when n = 864. There are 4725
groups of order 864 = 2°32, but only one of them has the property of having a
trivial 2-core.

3. An Example

An example that cannot be tackled with the previous results is the case p = 2,
m = 3-5=15. In this case, ['(15) = (3 —1)(5 — 1) = 23. Not all groups with order
of the form 2" - 3 - 5 are solvable, however, we will prove that A(2,15) is actually 4.
(The group Ss attests that A(2,15) > 3.)
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Theorem 3.1. Every group G of order 2" -3 -5 for r > 4 is such that O2(G) # 1.

Proof. Let G be a group of order 2" - 3 -5 for » > 4. Suppose that O2(G) = 1.
From Theorem 2.3, we obtain that G is not solvable. We will prove then that
O3(G) = 1. Suppose otherwise, and let T = O3(G). Then |G/T| = 2" -5, and so
G/T is solvable. Since 2" 1 I'(5), from Theorem 2.3, we have that O2(G/T) # 1.
Let L < G such that O2(G/T) = L/T. Suppose |L/T| = 27. Since O2(G/L) = 1,
|G/L| =277 .5 and G/L is solvable, we have that 2"~/ divides I'(5) = 22, that is,
r —j < 2. Now, L is also solvable and I'(3) = 3 — 1 = 2, hence if we had j > 2
we would have O3(L) # 1, and G would have a non-trivial subnormal 2-subgroup,
which contradicts our assumption that O2(G) = 1. Hence j = 1. But then r—1 < 2,
which contradicts that » > 4. Hence O3(G) = 1. By a similar argument, we get

From [1] we obtain that G is not simple. Hence G has a proper minimal normal
subgroup M. From the previous paragraph, we obtain that M is not abelian, since
in that case we would have that M < F(G). The only possibility is that M = As.
We have then a morphism ¢: G — Aut(A;) sending g to ¢4, the conjugation by g.
Since Aut(As) = S5, and |¢(G)| = [Inn(G)| > [Inn(As)| = 60, in any case the kernel
of ¢ is a nontrivial normal 2-subgroup. O
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