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Abstract. Given a prime number p and a natural number m not divisible by p, we

propose the problem of finding the smallest number r0 such that for r ≥ r0, every group

G of order prm has a non-trivial normal p-subgroup. We prove that we can explicitly

calculate the number r0 in the case where every group of order prm is solvable for all r,

and we obtain the value of r0 for a case where m is a product of two primes.

1. Introduction

Throughout this note, p will be a fixed prime number. We use Op(G) to denote
the p-core of G, that is, its largest normal p-subgroup.

We propose the following optimization problem: Given a numberm not divisible
by p, find the smallest r0 such that every group having order n = prm, with r ≥ r0,
has a nontrivial p-core Op(G). Denote such number r0 by Λ(p,m). In Theorem
2.1, we will prove that Λ(p,m) is well-defined for any prime p and number m (with
p ∤ m). In Theorem 2.3 we explicitly determine the value of Λ(p,m) in the case that
all groups whose order have the form prm are solvable (for example, if m is prime
or if both p and m are odd). Finally, in Section 3, we calculate Λ(2, 15), a case that
is not covered by the previous theorem.

We remark that the motivation for this research came from the search for exam-
ples of finite groups G such that the Brown complex Sp(G) of nontrivial p-subgroups
of G (see for example [5] for the definition and properties) is connected but not con-
tractible. It is known that Sp(G) is contractible when G has a nontrivial normal
p-subgroup, and Quillen conjectured in [3] that the converse is also true.

2. Theorems

Theorem 2.1. For any prime number p and natural number m such that p ∤ m,
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there is a number Λ(p,m) such that if r ≥ Λ(p,m), any group of order prm has a

non-trivial p-core Op(G).

Proof. Let G be a group of order prm with Op(G) = 1. Let P be a Sylow p-subgroup
of G. Since the kernel of the action of G on the set of cosets of P is precisely Op(G),
we obtain that G embeds in Sm, and so pr divides (m − 1)!. Hence, if pr0 is the
largest power of p dividing ((m-1)!), we obtain that Λ(p,m) ≤ r0 + 1. 2

For t, q natural numbers, let γ(t, q) be the product

(2.1) γ(t, q) = (qt − 1)(qt−1 − 1) · · · (q2 − 1)(q − 1),

(note that γ(t, q) can also be defined as (t)!q(q − 1)!, where (t)!q is the q-factorial
of t), and if m = qt1

1
qt2
2
· · · qtkk is a prime factorization of m, with the qi pairwise

distinct and ti > 0 for each i, we let Γ(m) = γ(t1, q1) · · · γ(tk, qk). We prove that if
ps0 is the largest power of p dividing Γ(m), then Λ(p,m) ≥ s0 + 1.

Theorem 2.2. Let n = psm where p ∤ m and s > 0. If ps | Γ(m), then there is a

group of order n with Op(G) = 1.

Proof. Let K be the group Ct1
q1
× · · ·×Ctk

qk
, that is, a product of elementary abelian

groups, where m = qt1
1
· · · qtkk and q1, . . . , qk are distinct primes and Cq denotes the

cyclic group of order q. Then Γ(m) divides the order of Aut(K), and hence so does
ps. Let H be a subgroup of Aut(K) of order ps. For every S ∈ H and k ∈ K define
the map TS,k : K → K by TS,k(x) = Sx+ k. Then G = {TS,k | S ∈ H, k ∈ K } is a
subgroup of Sym(K). If we identify H with the subgroup of maps of the form TS,0

and K with the subgroup of maps of the form T1K ,k, then G is just the semidirect
product of K by H . Hence |G| = n. We have that G acts transitively on K in
a natural fashion, and the stabilizer of 0 ∈ K is H , a p-Sylow subgroup of G.
Hence the stabilizers of points in K are precisely the Sylow subgroups of G, so their
intersection Op(G) contains only the identity K → K, as we wanted to prove. 2

The next theorem will show that the lower bound given by Theorem 2.2 is tight
in some cases.

Theorem 2.3. Let n = psm, where p ∤ m. If G is a group of order n and ps does

not divide Γ(m) then either:

1. (Op(G) 6= 1), or

2. G is not solvable.

Proof. Let G be solvable with order n = psm and Op(G) = 1. Let F (G) be the Fit-
ting subgroup of G. Consider the map c : G → AutF(G), sending g to cg : F (G) →
F (G) given by conjugation by g. The restriction of c to P , a p-Sylow subgroup of
G, has kernel P ∩ CG(F (G)). Since CG(F (G)) ≤ F (G) (Theorem 7.67 from [4]),
and F (G) does not contain elements of order p by our assumption on Op(G), we
have P ∩ CG(F (G)) = 1 and so P acts faithfully on F (G). If m = qt1

1
· · · qtkk is the

prime factorization of m, we have that F (G) is the direct product of the Oqi(G)
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for i = 1, · · · , k. Hence P ≤ Aut(F (G)) ∼= Aut(Oq1 (G)) × · · · × Aut(Oqk (G)). Let
g ∈ P such that the action induced by cg on

∏
iOqi(G)/Φ(Oqi (G)), is the identity.

Since cg acts on each factor Oqi (G)/Φ(Oqi(G)) as the identity, then by Theorem
5.1.4 from [2], we have that it acts as the identity on each Oqi (G). By the faithful
action of P on F (G), we have that g = 1. This implies that P acts faithfully on∏

i Oqi(G)/Φ(Oqi (G)). But then |P | divides the order of the automorphism group
of

∏
iOqi (G)/Φ(Oqi(G)), which is a product of elementary abelian groups of re-

spective orders qsii with si ≤ ti for all i. Hence ps = |P | divides Γ(m) 2

Corollary 2.4. Let ps be the largest power of p that divides Γ(m). If m is prime,

or if both p,m are odd, then Λ(p,m) = s+ 1.

Proof. By Burnside’s p, q-theorem, and the Odd Order Theorem, we have that all
groups that have order of the form prm for some r are solvable. Therefore, for all
r > s, by Theorem 2.3 we have that all groups of order prm have non-trivial p-core.
2

At this moment, we can prove that in some cases, the group constructed in 2.2
is unique.

Theorem 2.5. Let n = psm where p ∤ m and s > 0. If ps | Γ(m), but ps ∤ Γ(m′)
for all proper divisors m′ of m, then up to isomorphism, the group constructed in

the proof of Theorem 2.2 is the only solvable group of order n with Op(G) = 1.

Proof. With the notation of the argument of the proof of 2.3, if G is a solvable group
of order n with Op(G) = 1, we must have that |Oqi (G)| = qtii and Φ(Oqi (G)) = 1
for all i in order to satisfy the divisibility conditions. Hence Oqi(G) is elementary
abelian and a qi-Sylow subgroup for all i, and so G is the semidirect product of a
p-Sylow subgroup P of F (G) = Ct1

q1
× · · · × Ctk

qk
with F (G), where the action of P

on F (G) by conjugation is faithful. Hence G is isomorphic to the group constructed
in the proof of Theorem 2.3. 2

One case in that we may apply Theorem 2.5 is when n = 864. There are 4725
groups of order 864 = 2533, but only one of them has the property of having a
trivial 2-core.

3. An Example

An example that cannot be tackled with the previous results is the case p = 2,
m = 3 · 5 = 15. In this case, Γ(15) = (3− 1)(5− 1) = 23. Not all groups with order
of the form 2r · 3 · 5 are solvable, however, we will prove that Λ(2, 15) is actually 4.
(The group S5 attests that Λ(2, 15) > 3.)
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Theorem 3.1. Every group G of order 2r · 3 · 5 for r ≥ 4 is such that O2(G) 6= 1.

Proof. Let G be a group of order 2r · 3 · 5 for r ≥ 4. Suppose that O2(G) = 1.
From Theorem 2.3, we obtain that G is not solvable. We will prove then that
O3(G) = 1. Suppose otherwise, and let T = O3(G). Then |G/T | = 2r · 5, and so
G/T is solvable. Since 2r ∤ Γ(5), from Theorem 2.3, we have that O2(G/T ) 6= 1.
Let L ⊳ G such that O2(G/T ) = L/T . Suppose |L/T | = 2j . Since O2(G/L) = 1,
|G/L| = 2r−j · 5 and G/L is solvable, we have that 2r−j divides Γ(5) = 22, that is,
r − j ≤ 2. Now, L is also solvable and Γ(3) = 3 − 1 = 2, hence if we had j ≥ 2
we would have O2(L) 6= 1, and G would have a non-trivial subnormal 2-subgroup,
which contradicts our assumption that O2(G) = 1. Hence j = 1. But then r−1 ≤ 2,
which contradicts that r ≥ 4. Hence O3(G) = 1. By a similar argument, we get
that O5(G) = 1.

From [1] we obtain that G is not simple. Hence G has a proper minimal normal
subgroup M . From the previous paragraph, we obtain that M is not abelian, since
in that case we would have that M ≤ F (G). The only possibility is that M = A5.
We have then a morphism c : G → Aut(A5) sending g to cg, the conjugation by g.
Since Aut(A5) = S5, and |c(G)| = |Inn(G)| ≥ |Inn(A5)| = 60, in any case the kernel
of c is a nontrivial normal 2-subgroup. 2
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