DOI QR코드

DOI QR Code

한반도 목적별 인공강우 실험가능일 추정

Estimation of Available Days for a Cloud Seeding Experiment in Korea

  • 정운선 (국립기상과학원 융합기술연구부) ;
  • 장기호 (국립기상과학원 융합기술연구부) ;
  • 차주완 (국립기상과학원 융합기술연구부) ;
  • 구정모 (국립기상과학원 융합기술연구부) ;
  • 이철규 (국립기상과학원 융합기술연구부)
  • Jung, Woonseon (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Chang, Ki-Ho (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Cha, Joo Wan (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Ku, Jung Mo (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Lee, Chulkyu (Convergence Meteorological Research Department, National Institute of Meteorological Sciences)
  • 투고 : 2021.12.03
  • 심사 : 2022.02.03
  • 발행 : 2022.02.28

초록

In this study, we investigated the characteristics of the meteorological and environmental conditions for a cloud seeding experiment over the Korean peninsula and estimated the available days for the same. The conditions of available days appropriate for a cloud seeding experiment were classified according to four purposes: water resources, drought relief, forest fire prevention, and air quality improvement. The average number of available days for a cloud seeding experiment were 91.27 (water resources), 45.93-51.11 (drought relief), 40.28-46.00 (forest fire prevention), and 42.19-44.60 days/year (air quality improvement). If six experiments were carried out per available day for a cloud seeding experiment, the number of times cloud seeding experiments could be conducted per year in a continuously operating system were estimated as 547.62 (water resources), 275.58-306.66 (drought relief), 241.68-276.00 (forest fire prevention), and 253.14-267.60 times/year (air quality improvement). From this result, it was possible to determine the appropriate meteorological and environmental conditions and statistically estimate the available days for a cloud seeding experiment. The data on the available days for a cloud seeding experiment might be useful for preparing and performing such an experiment.

키워드

과제정보

이 연구는 기상청 국립기상과학원 「기상조절 및 구름물리 연구」(KMA2018-00224) 의 지원으로 수행되었습니다. 연구 자료 제공 및 협력에 도움을 준 기상청, 산림청, 국립산림과학원, 한국환경공단(국가대기오염정보관리시스템), 수자원공사에 감사드립니다.

참고문헌

  1. Cha, J. W., Jung, W., Chae, S., Ko, A. R., Ro, Y., Chang, K. H., Seo, S., Ha, J. C., Park, D., Hwang, H. J., Kim, M. H., Kim, K. E., Ku, J. M., 2019, Analysis of results and technics about precipitation enhancement by aircraft seeding in Korea, Atmos., 29, 481-499. https://doi.org/10.14191/Atmos.2019.29.4.481
  2. Flossmann, A. I., Manton, M., Abshaev, A., Bruintjes, R., Murakami, M., Prabhakaran, T., Yao, Z., 2019, Review of advances in precipitation enhancement research, Bull. Am. Meteorol. Soc., 1465-1480.
  3. Hashimoto, A., Murakami, M., Haginoya, S., 2017, First application of JMA-NHM to meteorological simulation over the United Arab Emirates, SOLA, 13, 146-150. https://doi.org/10.2151/sola.2017-027
  4. Intergovernmental Panel on Climate Change (IPCC), Pachauri, R. K. Meyer, L. A., 2015, Climate change 2014: Synthesis report, Cambridge University Press, IPCC, Cambridge, 1-151.
  5. Jung, K. Y., Eom, W. G., Kim, M. J., Jung, Y. S., 1998, A study of feasibility of cloud seeding in Korea, J. Korea Water Resour. Assoc., 31(5), 621-635.
  6. Jung, W., Murakami, M., Shinoda, T., Kato, M., 2018, Optimization of land surface parameters for weather simulations over arid and semi-arid regions, SOLA, 14, 197-202. https://doi.org/10.2151/sola.2018-035
  7. Jung, W., Chang, K. H., Ko, A. R., Ku, J. M., Ro, Y., Chae, S., Cha, J. W., Lee, C., 2021, Meteorological conditions for the cloud seeding experiment by aircraft in Korea, J. Environ. Sci. Int., 30(12), 1027-1039. https://doi.org/10.5322/JESI.2021.30.12.1027
  8. Lee, C., Chang, K. H., Cha, K. H., Jung, J. W., Jeong, J. Y., Yang, H. Y., Seo, S. K., Bae, J. Y., Kang, S. Y., Choi, Y. J., Cho, H. M., Choi, C. Y., 2010, Estimation for the economic benefit of weather modification (Precipitation enhancement and for dissipation), Atmos., 20, 187-194.
  9. Lee, J. H., Jeong, S. M., Kimg, S. J., Lee, M. H., 2006, Development of drought monitoring system: I. Applicability of drought indices for quantitative drought monitoring, J. Korea Water Resour. Assoc., 39(9), 787-800. https://doi.org/10.3741/JKWRA.2006.39.9.787
  10. McKee, T. B., Doesken, N. J., Kleist, J., 1993, The relationship of drought frequency and duration of time scales, 8th Conference on Applied Climatology, American Meteorological Society, Anaheim CA, 179-186.
  11. McKee, T. B., Doesken, N. J., Kleist, J., 1995, Drought monitoring with multiple time scales, 9th Conference on Applied Climatology, American Meteorological Society, Dallas TX, 233-236.
  12. Schaefer, V. J., 1946, The production of ice crystals in a cloud of supercooled water droplets, Science, 104, 457-459. https://doi.org/10.1126/science.104.2707.457
  13. Tai, Y., Liang, H., Zaki, A., Hadri, N. E., Abshaev, A. M., Huchinaev, B. M., Griffiths, S., Jouiad, M., Zou, L., 2017, Core/shell microstructure induced synergistic effect for efficient water-droplet formation and cloud-seeding application, ACS Nano, 11, 12318-12325. https://doi.org/10.1021/acsnano.7b06114
  14. Vonnegut, B., 1947, The nucleation of ice formation by silver-iodide, J. Appl. Phys., 18, 593-595. https://doi.org/10.1063/1.1697813
  15. World Meteorological Organization (WMO), 2009, Experts agree on an universal drought index to cope with climate risks, World Meteorological Organization press release No. 872, WMO, Gevena.
  16. World Meteorological Organization (WMO), 2018, Peer review report on global precipitation enhancement activities, WWRP 2018-1, WMO, Gevena, 1-129.
  17. Yang, I. K., 1965, Basic investigation and preliminary Field test for Precipitation Enhancement. Asia-Pac. J. Atmos. Sci., 1-13.