DOI QR코드

DOI QR Code

수소자동차의 제트화염 발생에 따른 위험성 분석

Risk Analysis of Jet Flame Occurred at Hydrogen Fuel Cell Vehicle

  • 박병직 (한국건설기술연구원 화재안전연구소) ;
  • 김양균 (한국건설기술연구원 화재안전연구소) ;
  • 임옥근 (동아대학교 경찰.소방학과)
  • Byoungjik, Park (Fire Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Yangkyun, Kim (Fire Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Ohk Kun, Lim (Department of Police and Fire Administration, Dong-A University)
  • 투고 : 2022.11.14
  • 심사 : 2022.12.01
  • 발행 : 2022.12.31

초록

Eco-friendly policies proposed by the government of The Republic of Korea have encouraged the use of eco-friendly vehicles. Hydrogen vehicles have exhibited the highest growth rate, although the current number of registered vehicles is low. In hydrogen vehicles, a thermally activated pressure relief device (TPRD) is installed to prevent explosions in the hydrogen gas cylinder. When discharged due to low ignition energy, hydrogen gas readily forms a jet flame. The risks induced by such jet flames were analyzed through a numerical analysis. Jet flames can activate TPRDs installed in nearby hydrogen gas cylinders. As a result, high-voltage cables exposed in the lower area of a vehicle can ignite within seconds. There was a 9.5-kW/m2 area around the vehicle (which can result in casualties) at a distance of ~5 m from the hydrogen gas cylinder, and a 37.5-kW/m2 area (which can cause significant damage) in the form of an inverted triangle toward the lower section of the vehicle. We believe that the risk factors analyzed herein should be considered for addressing accidents in hydrogen vehicles.

키워드

과제정보

Research for this paper was carried out under the KICT Research Program (project no. 20220232-001, Development of technology to secure safety and acceptability for infrastructure in hydrogen city) funded by the Ministry of Science and ICT.

참고문헌

  1. National Fire Agency, "https://www.nfa.go.kr/nfa/news/pressrelease/press/?boardId=bbs_0000000000000010&mode=view&cntId=1305&category=&pageIdx=&searchCondition=&searchKeyword=", Retrieved on 12.03.2022
  2. National Fire Research Institute of Korea, "http://nfire.go.kr/board/boardView.do?menu_id=534&board_id=480&board_type_id=BBS_0000000209", Retrieved on 09.15.2022
  3. Ministry of Land, Infrastructure and Transport (MOLIT), "http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?lcmspage=1&id=95086498", Retrieved on 01.28.2022
  4. Hydrogen Tools, "https://h2tools.org/lessons?search_api_fulltext=", Retrieved on 09.25.2022.
  5. K. Sun and Z. Li, "Development of Emergency Response Strategies for Typical Accidents of Hydrogen Fuel Cell Electric Vehicles", Int. J. Hydrog. Energy., Vol. 46, Issue 75, pp. 37679-37696, 2021. https://doi.org/10.1016/j.ijhydene.2021.02.130
  6. G. J. Yong, K. B. Lee and H. B. Kwon, "Study of KMVSS for Hydrogen Fuel Cell Vehicle", J. Auto-veh. Saf. Assoc., Vol. 6, No. 2, pp. 72-77, 2014. https://doi.org/10.22680/KASA.2014.6.2.072
  7. A. Kumamoto, H. Iseki, R. Ono and T. Oda, "Measurement of Minimum Ignition Energy in Hydrogen-oxygen-nitrogen Premixed Gas by Spark Discharge", J. Phy.: Conference Series, Vol. 301, 13th International Conference on Electrostatics, 2011.
  8. European Industrial Gases Association, "Determination of Safety Distances", IGC Doc 75/07/E, 2007.
  9. Hyundai, NEXO Emergency Response Guide, "https://www.nfpa.org/Training-and-Events/By-topic/Alternative-Fuel-Vehicle-Safety-Training/Emergency-Response-Guides/Hyundai", Retrieved on 09.25.2022.
  10. K. Lee, J. Lee and G. Yong, "The Analysis of Emergency Response Guide for Hydrogen Fuel Cell Vehicle", Trans. Kor. Hydrog. and New Energy Socy., Vol. 23, No. 2, pp. 156-161, 2012. https://doi.org/10.7316/KHNES.2012.23.2.156
  11. K. Lee, M. Kwon, S. Kang, J. Choi, Y. Kim and O. K. Lim, "The Safety of Hydrogen Jet-flame Suppression Training", Fire Sci. and Eng., Vol. 36, No. 3, pp. 31-36, 2022. https://doi.org/10.7731/KIFSE.abe27c0e
  12. S. Kang, "A Study of Jet Dispersion and Jet-fire Characteristics for Safety Distance of the Hydrogen Refueling Station", J. Kor. Inst. Gas, Vol. 23, No. 6, pp. 74-80, 2019.
  13. B. Park, Y. Kim and O. K. Lim, "Training Program Analysis for Incidents in Hydrogen Refueling Stations", J. Korean Soc. Hazard Mitig., Vol. 21, No. 6, pp. 103-110, 2021.
  14. United Nations Economic Commission for Europe. Global Technical Regulation No. 13 (Hydrogen and Fuel Cell Vehicles) UN GTR No. 13, "https://unece.org/transport/standards/transport/vehicle-regulations-wp29/global-technical-regulations-gtrs", Retrieved on 10.10.2021
  15. Chosun Biz, "https://biz.chosun.com/industry/company/2021/07/11/RUCNHRM645ACHIPKY25V7HKHBI/", Retrieved on 12.10.2021
  16. ANSYS Co., "ANSYS FLUENT Theory Guide Release 2020 R2", 2020.
  17. A. D. Birch, D. R. Brown, M. G. Dodson And F. Swaffield, "The Structure and Concentration Decay of High Pressure Jets of Natural Gas", Combust. Sci. Technol., Vol. 36, No. 5-6, pp. 249-261, 1984. https://doi.org/10.1080/00102208408923739
  18. X. Li, D. M. Christopher, E. S. Hecht and I. W. Ekoto, "Comparison of Two-layer Model for Hydrogen and Helium Jets with Notional Nozzle Model Predictions and Experimental Data for Pressures Up to 35 MPa", Int. J. Hydrog. Energy, Vol. 42 No. 11, pp. 7457-7466, 2017. https://doi.org/10.1016/j.ijhydene.2016.05.214
  19. W. Houf and R. Schefer, "Analytical and Experimental Investigation of Small-scale Unintended Releases of Hydrogen", Int. J. Hydrog. Energy, Vol. 33, No. 4, pp. 1435-1444, 2008. https://doi.org/10.1016/j.ijhydene.2007.11.031
  20. X. Yu, W. Yan, Y. Liu, P. Zhou and B. Li, C. Wang, "The Flame Mitigation Effect of Vertical Barrier Wall in Hydrogen Refueling Stations", Fuel, Vol. 315, 123265, 2022
  21. U. S. Department of Energy Office of Scientific and Technical Information, "https://www.osti.gov/biblio/1832082", Retrieved on 10.12.2022
  22. J. LaChance, A. Tchouvelev and A. Engebo, "Development of Uniform Harm Criteria for use in Quantitative Risk Analysis of the Hydrogen Infrastructure", Int. J. Hydrog. Energy, Vol. 36, Issue 3, pp. 2381-2388, 2011.
  23. Ministry of Trade, Industry and Energy (MOTIE), "https://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_seq_n=165454&bbs_cd_n=81¤tPage=1&search_key_n=title_v&cate_n=&dept_v=&search_val_v=%ED%95%9C%EA%B5%AD%EC%9D%B8%20%ED%8F%89%EA%B7%A0%20%ED%82%A4", .Retrieved on 03.31.2022.
  24. G. F. Morales, B. D. Ehrhart and A. B. Mura, "HyRAM V2.0 User Guide", SANDIA Report, SAND219-8940, Sandia National Laboratories, USA, 2019.
  25. P. Blanc-Vannet, S. Jallais, B. Fuster, F. Fouillen, D. Halm, T. van Eekelen, S. Welch, P. Breuer and S. Hawksworth, "Fire Tests Carried Out in FCH JU Firecomp Project, Recommendations and Application to Safety of Gas Storage Systems", Int. J. Hydrog. Energy, Vol. 44, Issue 17, pp. 9100-9109, 2019. https://doi.org/10.1016/j.ijhydene.2018.04.070
  26. ISO 5660-1:2015, Reaction-to-fire tests - Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement), International Standard Organization (ISO), Switzerland, 2015.