DOI QR코드

DOI QR Code

전산유체역학을 이용한 FLNG의 풍하중 추정에 관한 연구

Numerical Estimation of Wind Loads on FLNG by Computational Fluid Dynamics

  • 이상의 (창원대학교 메카융합공학과)
  • Sang-Eui, Lee (Department of Mechatronics Convergence Engineering, Changwon National University)
  • 투고 : 2022.11.24
  • 심사 : 2022.12.07
  • 발행 : 2022.12.31

초록

큰 상부 형상을 가지는 FLNG (Liquefied Natural Gas Floating Production Storage Offloading Units, LNG FPSOs) 등의 해양구조물은 안정적인 운동성능 확보 및 계류라인 설계에 있어 정도 높은 풍하중 추정이 필수적이다. 따라서 본 연구의 목적은 FLNG의 풍하중 추정을 위한 수치해석 기법을 개발하는 데 있다. 특히, 본 연구에서 개발한 수치해석 기법은 저자의 이전연구를 FLNG에 맞추어 수정하였다. 풍하중 추정을 위한 수치해석은 15° 간격으로 0-360° 범위에서 균일 풍속 조건과 풍속 프로파일을 적용한 NPD (Norwegian Petroleum Directorate) 조건에서 수행하였다. 먼저, NPD 모델 풍속 프로파일 모델 개발을 위해 Sand-Grain Roughness 변화에 따른 풍속 프로파일을 분석하였다. 개발된 NPD 모델을 이용하여 3가지 풍향 (Head, Quartering & Beam)에 대한 메쉬 수렴성 시험을 수행하였다. 최종적으로 개발된 NPD 모델과 메쉬를 이용하여 균일한 풍속 조건과 NPD 조건에서의 풍하중을 평가하고 비교하였다. 본 연구에서는 RANS (Reynolds-averaged Navier-Stokes) 기반 Solver인 STAR-CCM+ (17.02)를 이용하였다. 결과를 요약하면, 풍속 프로파일을 적용한 NPD 모델에서의 풍하중은 균일 풍속(10m/s) 조건과 비교하여, Surge와 Yaw 하중이 최대 20.35 % 와 34.27% 증가하였다. 특히, 특정 일부 구간에서만 큰 하중의 차이를 보인 Sway (45°< α < 135°, 225°< α < 315°)와 Roll (60° < α < 135°, 225° < α < 270°)은 구간별 평균 증가율이 15.60%와 10.89% 수준으로 나타났다.

It has been noted that an accurate estimation of wind loads on offshore structures such as an FLNG (Liquefied Natural Gas Floating P roduction Storage Offloading Units, LNG FPSOs) with a large topside plays an important role in the safety design of hull and mooring system. Therefore, the present study aims to develop a computational model for estimating the wind load acting on an FLNG. In particular, it is the sequel to the previous research by the author. The numerical computation model in the present study was modified based on the previous research. Numerical analysis for estimating wind loads was performed in two conditions for an interval of wind direction (α), 15° over the range of 0° to 360°. One condition is uniform wind speed and the other is the NPD model reflecting the wind speed profile. At first, the effect of sand-grain roughness on the speed profile of the NPD model was studied. Based on the developed NPD model, mesh convergence tests were carried out for 3 wind headings, i.e. head, quartering, and beam. Finally, wind loads on 6-degrees of freedom were numerically estimated and compared by two boundary conditions, uniform speed, and the NPD model. In the present study, a commercial RANS-based viscous solver, STAR-CCM+ (ver. 17.02) was adopted. In summary, wind loads in surge and yaw from the wind speed profile boundary condition were increased by 20.35% and 34.27% at most. Particularly, the interval mean of sway (45° < α <135°, 225° < α < 315°) and roll (60° < α < 135°, 225° < α < 270°) increased by 15.60% and 10.89% against the uniform wind speed (10m/s) boundary condition.

키워드

과제정보

이 논문은 2021-2022년도 창원대학교 자율연구과제 연구비 지원으로 수행된 연구 결과임.

참고문헌

  1. Andersen, O. J. and Lovseth, J.(2006), "The Froya Database and Maritime Boundary Layer Wind Description", Marine Structure, Vol. 19, No. 2-3, pp. 173-192. https://doi.org/10.1016/j.marstruc.2006.07.003
  2. Aage, C.(1971), "Wind Coefficients for Nine Ship Models", Report No. A-3, Hydro- and Aerodynamic Laboratory, Lyngby, Denmark.
  3. Berto, K., Hodapp, D. and Falzarano, J.(2019), "A Detailed Look into the 2017 SNAME OC-8 Comparative Wind Load Study", The Offshore Technology Conference, Houston, Texas, May.
  4. Blendermann, W.(1993), "Wind Loads on Moored and Manoeuvering Vessels", Proceedings of the ASME 12th Int. Conf. on Offshore Mechanics and Arctic Engineering, June 20-24, Glasgow, UK., Vol. I, pp. 183-189.
  5. Blendermann, W.(1994), "Parameter Identification of Wind Loads on Ships", Journal of Wind Energy and Industrial Aerodynamics, Vol. 51, pp. 339-351. https://doi.org/10.1016/0167-6105(94)90067-1
  6. Blendermann, W.(1995), "Estimation of Wind Loads on Ships in Wind with a Strong Gradient", Proc. of the ASME 14th Int. Conf. on Offshore Mechanics and Arctic Engineering, June 18-22, Copenhagen, Denmark, Vol. 1-A, pp. 271-277.
  7. Blendermann, W.(1996), "Wind Loading of Ships-collected Data from Wind Tunnel Tests in Uniform Flow", Institut fuer Schiffbau der Universitat Hamburg, Hamburg, Germany.
  8. Gould, R. W. F.(1982), "The Estimation of Wind Loadings on Ship Superstructures", The Royal Institution of Naval Architects, Marine Technology Monograph No. 8.
  9. Haddara, M. R. and Guedes Soares, C.(1999), "Wind Loads on Marine Structures", Marine Structures, Vol. 12, pp. 199-209. https://doi.org/10.1016/S0951-8339(99)00023-4
  10. Isherwood, R. M.(1972), "Wind Resistance of Merchant Ships", Transactions of the Royal Institution of Naval Architects, Vol. 114(3), pp. 327-338.
  11. Kim, J. W., Jang, H. C., W. Xu, Shen, Z., Kara, M., Yeon, S. M. and Yan, H.(2018), "Numerical Modelling of Neutrallystable and sustainable Atmospheric Boundary Layer for the Wind Load Estimation on an Offshore Platform", The 37th Int. Conf. on Ocean, Offshore and Arctic Engineering, Madrid, Spain, June 17-22.
  12. Koop, A., Klaij, C. and Vaz, G.(2010), "Predicting Wind Loads for FPSO Tandem Offloading using CFD", Proc. of the ASME 29th Int. Conf. on Ocean, Offshore and Arctic Engineering, June 6-11, Shanghai, China.
  13. Lee, S. E.(2015), A Probabilistic Approach to Determine Niminal Values of Tank Sloshing Loads in Structural Design of LNG FPSOs, PhD Thesis, Pusan National University.
  14. Lee, S. E.(2020), "Effect of Wind Speed Profile on Wind Loads of a Fishing Boat", Journal of The Korea Society of Marine Environment & Safety, Vol. 27, No. 6, pp. 922-930. https://doi.org/10.7837/kosomes.2020.26.7.922
  15. OCIMF(1994), Prediction of Wind and Current Loads on VLCCs (2nd Ed.), Witherby and Co., London, UK.
  16. Paik J. K. and Thayamballi A. K.(2007), Ship-shaped Offshore Installations: Design, Building, and Operation, Cambridge (UK), Cambridge University Press.
  17. Shearer, K. D. A. and Lynn, W. M.(1960), "Wind Tunnel Tests on Models of Merchant Ships", Transactions of the North East Coast Institution of Engineers and Shipbuilders, Vol. 76, pp. 229-266.
  18. STAR-CCM+.(2022), User's Guide (Ver. 17.02), SIEMENS, Munich.
  19. van Berlekom, W. B., Tragardh, P. and Dellhag, A.(1975), "Large Tankers-wind Coefficients and Speed Loss due to Wind and Waves", The Transactions of The Royal Institution of Naval Architects, Vol. 117, pp. 41-58.
  20. van Berlekom, W. B.(1981), "Wind Forces on Modern Ship Forms- Effects on Performance", Transactions of the North East Coast Institute of Engineers and Shipbuilders, Vol. 97(4), pp. 123-134.
  21. van Oortmerssen, G., van der Vegt, J. J. W. and van Walree, F.(1987), "Forces on Cylinders in Oscillatory Flow: a Comparison of the Results of Numerical and Physical-models", Proc. of the 3rd Int. Sym. Practical Design of Ships and Other Floating Structures, June 22-26, Trondheim, Norway.
  22. White, G. P.(1966), Wind Resistance-suggested Procedure for Correction of Ship Trial Results, NPL TM116.
  23. Wnek, A. D., Guedes Soares, A., Zhou, X-Q. and Guedes Soares, C.(2010), "Numerical and Experimental Analysis of the Wind Forces Acting on LNG Carrier", V European Conference on Computational Fluid Dynamics, June 14-17, Lisbon, Portugal.
  24. Yeon, S. M., Kwon, C. S., Kim, Y. C. and Kim, K. S.(2022), "Study of the Lift Effect on Wind Load Estimation for a Semi-submersible Rig using the Maritime Atmospheric Boundary Layer Model", Int. J. of Naval Architecture and Ocean Engineering, Vol. 14, 100419.