DOI QR코드

DOI QR Code

심해공학수조 조파기 전달함수 근사 모델 개발

Development of Meta Model of Transfer Function for Wavemaker of Deep Ocean Engineering Basin

  • 오승훈 (부산대학교 조선해양공학과) ;
  • 김은수 (선박해양플랜트연구소) ;
  • 정성준 (부산대학교 조선해양공학과)
  • Seunghoon, Oh (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Eun-Soo, Kim (Korea Research Institute of Ships and Ocean Engineering) ;
  • Sungjun, Jung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 투고 : 2022.08.01
  • 심사 : 2022.09.01
  • 발행 : 2022.12.31

초록

본 연구는 심해공학수조의 파 생성 특성을 규명하고, 심해공학수조의 기하학적 특성을 반영한 조파기 전달함수의 근사모델을 개발하는 것을 목적으로 한다. 심해공학수조의 기하학적 특성을 반영한 효율적인 해석을 위해 2차원 주파수영역 경계요소법이 적용되었다. 개발된 수치해석법은 해석해와 비교하여 검증되었다. 다양한 주기와 이동식 바닥판의 위치 변화에 대한 조파기의 경계치 문제의 수치해석이 수행되었다. 수치결과를 통해 심해공학수조의 기하학적 특성이 조파기의 전달함수에 미치는 영향을 조사하였고, 이동식 바닥판의 위치를 변화시켜 파도 생성에 대한 깊이 효과를 확인하였다. 경계요소법의 다양한 결과를 효율적으로 활용하기 위해 박판 스플라인 보간 모델 기반의 조파기 근사모델을 개발하였다. 개발된 근사 모델의 타당성은 모델 테스트 결과 비교를 통해 확인하였다.

This study aims to investigate the characteristics of wave generation in a deep ocean engineering basin and to develop a meta-model of the transfer function of the wavemaker that reflects the geometric characteristics of the deep ocean engineering basin. To this end, the two-dimensional frequency domain boundary element method was applied to achieve an efficient analysis that reflects the geometric characteristics of the deep ocean engineering basin. The developed numerical method was validated through comparison with the analytical solution. Numerical analyses were conducted for the boundary value problem of the wavemaker according to various periods and the positions of the movable bottom. The numerical results were used to investigate the effect of the geometric characteristics of the deep ocean engineering basin on the transfer function of the wavemaker, and the effect of depth on wave generation was checked by changing the position of the movable bottom. To efficiently utilize the various results of the boundary element method, a meta-model, an approximate model of the transfer function of the wave maker, was developed using a thin plate spline interpolation model. The validity of the developed meta-model was confirmed through a comparison of the results of the model tests.

키워드

과제정보

본 연구는 선박해양프랜트연구소에서 지원하는 "심해용 복합해양 플랫폼 통합 성능평가 기술개발(PES4310)"의 결과물임을 밝히는 바입니다.

참고문헌

  1. Ahn, J. Y., Choi, J. K. and Kim, H. T.(2013), "Investigation of Characteristics of Waves Generated in Two-Dimensional Wave Channel", Journal of Ocean Engineering and Technology, Vol. 27, No. 4, pp. 68-75. https://doi.org/10.5574/KSOE.2013.27.4.068
  2. Biesel, F. and Suquet, F.(1951), "Les Appareils generateurs de Houle en Laboratoire", La Houille Blanche, Vol. 6, No. 2, pp. 147-165.
  3. Dalrymple, R. A. and Dean, R. G.(1972), "The Spiral Wavemaker for Littoral Drift Studies", Proc. 13th Conf. Coastal Eng.
  4. Flick, R. E. and Guza, R. T.(1980), "Paddle Generated Waves in Laboratory Channels", Journal of Waterway, Port, Coastal and Ocean Division, Vol. 106, pp. 79-97. https://doi.org/10.1061/JWPCDX.0000193
  5. Havelock, T. H.(1929), "Forced Surface-Waves on Water", Dublin Philos. Mag., Vol. 8, pp. 569-576. https://doi.org/10.1080/14786441008564913
  6. Hudspeth, R. T. and Sulisz, W.(1991), "Stokes Drift in Two-Dimensional Wave Flumes", Journal of Fluid Mechanics, Vol. 230, pp. 209-229. https://doi.org/10.1017/S0022112091000769
  7. Jung, S. J., Oh, S. H., Jung, D. W., Kim, Y. H. and Jung, D. H.(2020), "Experimental and Numerical Study of Berthing and Unberthing of LNG Bunkering Vessels", Journal of Navigation and Port Research, Vol. 44, No. 6, pp. 439-446. https://doi.org/10.5394/KINPR.2020.44.6.439
  8. Jung, S. J., Jung, D. W., Oh, S. H., Kim, Y. H. and Jung, D. H.(2021), "Numerical Assessment of LNGC Berthing Operation to FLBT", Journal of Navigation and Port Research, Vol. 45, No. 3, pp. 87-94. https://doi.org/10.5394/KINPR.2021.45.3.087
  9. Kwon, J., Kim, H., Lew, J. M. and Oh, J.(2017), "Simplified Analyitic Solution of Submerged Wave Board Motion and Its Application on the Design of Wave Generator", Journal of the Society of Naval Architects of Korea, Vol. 54, No. 6, pp. 461-469. https://doi.org/10.3744/SNAK.2017.54.6.461
  10. Lim, H. and Bae, H. O.(2019), "Construction of the Implied Volatility Surface by Thin Plate Spline Function", Korean Journal of Financial Engineering, Vol. 18, No. 4, pp. 1-36. https://doi.org/10.35527/KFEDOI.2019.18.4.001
  11. Madsen, O. S.(1974), "A THREE DIMENSIONAL WAVE MAKER, ITS THEORY ANDAPPLICATION", Journal of Hydraulic Research, Vol. 12, No. 2, pp. 205-222. https://doi.org/10.1080/00221687409499738
  12. Moubayed, W. I. and Williams, A. N.(1994), "Second-Order Bichromatic Waves Produced by Generic Planar Wavemaker in a Two-Dimensional Wave Flume", Journal of Fluids and Structures, Vol. 8, pp. 73-92. https://doi.org/10.1006/jfls.1994.1003
  13. Oh, S., Cho, S. K., Jung, D. and Sung, H. G.(2018), "Development and Application of Two-dimensional Numerical Tank Using Desingularized Indirect Boundary Integral Equation Method", Journal of Ocean Engineering and Technology, Vol. 32, No. 6, pp. 447-457. https://doi.org/10.26748/KSOE.2018.32.6.447
  14. Oh, S., Jung, J. H. and Cho, S. K.(2020), "Higher-order Spectral Method for Regular and Irregular Wave Simulations", Journal of Ocean Engineering and Technology, Vol. 34, No. 6, pp. 406-418. https://doi.org/10.26748/KSOE.2020.052
  15. Schaffer, H. A.(1996), "Second-Order Wavemaker Theory for Irregular Waves", Ocean Engineering, Vol. 23, pp. 47-88. https://doi.org/10.1016/0029-8018(95)00013-B