DOI QR코드

DOI QR Code

Surface soil moisture memory using stored precipitation fraction in the Korean peninsula

토양 내 저장 강수율을 활용한 국내 표층 토양수분 메모리 특성에 관한 연구

  • Kim, Kiyoung (Soil Moisture and Evapotranspiration Infra Team, Korea Institute of Hydrological Survey) ;
  • Lee, Seulchan (Department of Water Resources, Sungkyunkwan University) ;
  • Lee, Yongjun (Soil Moisture and Evapotranspiration Infra Team, Korea Institute of Hydrological Survey) ;
  • Yeon, Minho (Department of Advanced Science and Technology Convergence, Kyungpook National University) ;
  • Lee, Giha (Department of Advanced Science and Technology Convergence, Kyungpook National University) ;
  • Choi, Minha (School of Civil, Architecture Engineering & Landscape Architecture, Sungkyunkwan University)
  • 김기영 (한국수자원조사기술원 첨단인프라실 토양수분.증발산량팀) ;
  • 이슬찬 (성균관대학교 수자원학과) ;
  • 이용준 (한국수자원조사기술원 첨단인프라실 토양수분.증발산량팀) ;
  • 연민호 (경북대학교 미래과학기술융합학과) ;
  • 이기하 (경북대학교 미래과학기술융합학과) ;
  • 최민하 (성균관대학교 건설환경공학부)
  • Received : 2021.09.27
  • Accepted : 2021.11.22
  • Published : 2022.02.28

Abstract

The concept of soil moisture memory was used as a method for quantifying the function of soil to control water flow, which evaluates the average residence time of precipitation. In order to characterize the soil moisture memory, a new measurement index called stored precipitation fraction (Fp(f)) was used by tracking the increments in soil moisture by the precipitation event. In this study, the temporal and spatial distribution of soil moisture memory was evaluated along with the slope and soil characteristics of the surface (0~5 cm) soil by using satellite- and model-based precipitation and soil moisture in the Korean peninsula, from 2019 to 2020. The spatial deviation of the soil moisture memory was large as the stored precipitation fraction in the soil decreased preferentially along the mountain range at the beginning (after 3 hours), and the deviation decreased overall after 24 hours. The stored precipitation fraction in the soil clearly decreased as the slope increased, and the effect of drainage of water in the soil according to the composition ratio of the soil particle size was also shown. In addition, average soil moisture contributed to the increase and decrease of hydraulic conductivity, and the rate of rainfall transfer to the depths affected the stored precipitation fraction. It is expected that the results of this study will greatly contribute in clarifying the relationship between soil moisture memory and surface characteristics (slope, soil characteristics) and understanding spatio-temporal variation of soil moisture.

물의 흐름을 제어하는 토양의 기능을 정량적으로 계산하기 위한 방법인 토양수분 메모리(soil moisture memory)는 토양에 도달한 강수가 저장되고 배출되기까지 평균적으로 체류하는 시간을 평가한다. 본 연구에서는 2019, 2020년 한반도 지역에서 강수와 토양수분 위성 기반 모델 산출물을 활용하여 표층(0~5 cm)토양에서의 토양수분 메모리를 산출하고 이를 활용하여 연구지역 내 토양수분 메모리의 시공간적인 분포를 지표면의 경사 및 토양의 특성과 함께 평가하였다. 토양수분 메모리를 특성분석을 위해 강수 사건에 따라 토양수분의 증가를 추적하여 저장 강수율(Fp(f))이라는 새로운 측정 지표를 활용하였다. 강수 발생 초기(3시간 후)에는 산맥을 기준으로 토양 내 저장 강수율이 우선적으로 감소하여 토양수분 메모리의 공간적인 편차가 컸으며 24시간 이후 전반적으로 편차가 감소하였다. 토양 내 저장 강수율은 경사가 증가할수록 감소하는 형태가 뚜렷하게 나타났으며 토양 입자 크기의 구성 비율에 따른 토양 내 수분의 배수 활동에 의한 영향을 확인할 수 있었다. 또한 수리전도도 증감에 기여하는 평균토양수분이 저장 강수율에 미치는 영향을 확인하였다. 본 연구 결과는 강수가 지면에 체류하는 시간에 대한 척도인 토양수분 메모리가 지표의 경사와 토양 특성과 갖는 관계를 규명하고 토양수분의 시공간적 변동성을 이해하는 데 기여할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 환경부 "2021년 토양수분량 조사"와 "표토보전관리기술개발사업; 2019002830001"으로 지원받은 과제임.

References

  1. Aubert, D., Loumagne, C., and Oudin, L. (2003). "Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall - runoff model." Journal of Hydrology, Vol. 280, No. 1, pp. 145-161. https://doi.org/10.1016/S0022-1694(03)00229-4
  2. Berhanu, B., Melesse, A.M., and Seleshi, Y. (2013). "GIS-based hydrological zones and soil geo-database of Ethiopia." Catena, Vol. 104, pp. 21-31. https://doi.org/10.1016/j.catena.2012.12.007
  3. Brown, M.E., Escobar, V., Moran, S., Entekhabi, D., O'Neill, P.E., Njoku, E.G., Doorn, B., and Entin, J.K. (2013). "NASA's soil moisture active passive (SMAP) mission and opportunities for applications users." Bulletin of the American Meteorological Society, Vol. 94, No. 8, pp. 1125-1128. https://doi.org/10.1175/BAMS-D-11-00049.1
  4. Daly, E., and Porporato, A. (2005). "A review of soil moisture dynamics: From rainfall infiltration to ecosystem response." Environmental Engineering Science, Vol. 22, No. 1, pp. 9-24. https://doi.org/10.1089/ees.2005.22.9
  5. De Sousa, L.M., Poggio, L., Dawes, G., Kempen, B., and Van Den Bosch, R. (2020). Computational infrastructure of SoilGrids 2.0. International Symposium on Environmental Software Systems, Springer, Cham, pp. 24-31.
  6. Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., and Yoo, S.H. (2015). NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version 4, NASA/GSFC, Greenbelt, MD, U.S., Vol 26, pp. 9-11.
  7. Jung, K., Ha, S., and Lee, H. (2006). "Runoff pattern in upland soils with various soil texture and slope at torrential rainfall events." Korean Journal of Soil Science and Fertilizer, Vol. 40, No. 8, pp. 208-213.
  8. Kim, H., and Lakshmi, V. (2019). "Global dynamics of stored precipitation water in the topsoil layer from satellite and reanalysis data." Water Resources Research, Vol. 55, No. 4, pp. 3328-3346. https://doi.org/10.1029/2018WR023166
  9. Kovaricek, P., Sindelar, R., Hula, J., and Honzik, I. (2008). "Measurement of water infiltration in soil using the rain simulation method." Research in Agricultural Engineering, Vol. 54, No. 3, pp. 123-129. https://doi.org/10.17221/711-rae
  10. Lorenz, R., Jaeger, E.B., and Seneviratne, S.I. (2010). "Persistence of heat waves and its link to soil moisture memory." Geophysical Research Letters, Vol. 37, No. 9.
  11. Maleksaeedi, E., and Nuth, M. (2020). "Evaluation of capillary water retention effects on the development of the suction stress characteristic curve." Canadian Geotechnical Journal, Vol. 57, No. 10, pp. 1439-1452. https://doi.org/10.1139/cgj-2019-0326
  12. Manning, R., Griffith, J.P., Pigot, T.F., and Vernon-Harcourt, L.F. (1890). On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, Ireland, pp. 161-207.
  13. Martinez-Fernandez, J., Gonzalez-Zamora, A., and Almendra-Martin, L. (2021). "Soil moisture memory and soil properties: An analysis with the stored precipitation fraction." Journal of Hydrology, Vol. 593.
  14. McColl, K.A., Alemohammad, S.H., Akbar, R., Konings, A.G., Yueh, S., and Entekhabi, D. (2017). "The global distribution and dynamics of surface soil moisture." Nature Geoscience, Vol. 10, No. 2, pp. 100-104. https://doi.org/10.1038/ngeo2868
  15. Mohammed, P.N., Aksoy, M., Piepmeier, J.R., Johnson, J.T., and Bringer, A. (2016). "SMAP L-band microwave radiometer: RFI mitigation prelaunch analysis and first year on-orbit observations." IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 10, pp. 6035-6047. https://doi.org/10.1109/TGRS.2016.2580459
  16. Mueller, B., and Seneviratne, S.I. (2012). "Hot days induced by precipitation deficits at the global scale." Proceedings of the National Academy of Sciences, Vol. 109, No. 31, pp. 12398-12403. https://doi.org/10.1073/pnas.1204330109
  17. O, S., and Orth, R. (2021). "Global soil moisture data derived through machine learning trained with in-situ measurements." Scientific Data, Vol. 8, No. 1, pp. 1-14. https://doi.org/10.1038/s41597-020-00786-7
  18. Ogden, F.L., Richardson, J.R., and Julien, P.Y. (1995). "Similarity in catchment response: 2. Moving rainstorms." Water Resources Research, Vol. 31, No. 6, pp. 1543-1547. https://doi.org/10.1029/95WR00519
  19. Pellarin, T., Wigneron, J.P., Calvet, J.C., and Waldteufel, P. (2003). "Global soil moisture retrieval from a synthetic L-band brightness temperature data set." Journal of Geophysical Research: Atmospheres, Vol. 108, No. D12.
  20. Reichle, R.H., De Lannoy, G.J., Liu, Q., Ardizzone, J.V., Colliander, A., Conaty, A., Crow, W., Jackson, T.J, Jones, L.A, Kimball, J.S., Koster, R.D., Mahanama, S.P., Smith, E.B., Berg, A., Bircher, S., Bosch, D., Caldwell, T.G., Cosh, M., Angel, G.Z., Collins, C.D., Jensen, K.H., Livingston, S., Ernesto, L.B., Jose, M.F., McNairn, H., Moghaddam, M., Pacheco, A., Pellarin, T., Prueger, J., Rowlandson, T., Seyfried, M., Starks, P., Su, Z., Thibeault, Marc., Velde, R. V., Walker, J., Wu, X., and Zeng, Y. (2017). "Assessment of the SMAP level-4 surface and root-zone soil moisture product using in situ measurements." Journal of Hydrometeorology, Vol. 18, No. 10, pp. 2621-2645. https://doi.org/10.1175/jhm-d-17-0063.1
  21. Shao, Y., and Irannejad, P. (1999). "On the choice of soil hydraulic models in land-surface schemes." Boundary-Layer Meteorology, Vol. 90, No. 1, pp. 83-115. https://doi.org/10.1023/A:1001786023282
  22. Tuller, M., and Or, D. (2005). "Water films and scaling of soil characteristic curves at low water contents." Water Resources Research, Vol. 41, No. 9.
  23. United States Department of Agriculture (USDA) (1987). Soil mechanics level 1 module 3 USDA soil textural classification study guide. USDA Soil Conservation Service, Washington DC, U.S., p. 7.