DOI QR코드

DOI QR Code

Risk Assessment of a Drone Under the Gust and its Precise Flight Simulation

드론의 외풍 환경 비행 안전성 평가 및 정밀 시뮬레이션

  • Lee, DongYeol (Department of Aerospace Engineering, Seoul National University) ;
  • Park, SunHoo (Department of Aerospace Engineering, Seoul National University) ;
  • Shin, SangJoon (Department of Aerospace Engineering, Seoul National University)
  • Received : 2021.11.15
  • Accepted : 2022.02.24
  • Published : 2022.03.01

Abstract

The operation and transportation environment for an unmanned aerial vehicle will be completely different from those for the conventional air and ground transportation. The requirement for a traffic management system for its safe operation has been emerging. Accordingly, investigation is being conducted to analyze the danger that unmanned aerial vehicle may encounter during the flight and to provide the countermeasure by the simulation. When the drones operate in an urban environment, they may be affected by the wind around the building. Thus it is essential to predict the influence of the gust and analyze the resulting risk. In this paper, a method for evaluating the safety for a flight mission under the gust is suggested. By using the precise 6-degree-of-freedom flight simulation that is capable of simulating the gust condition, possible deviation from the pre-planned flight path in terms of the attitude orientation will be predicted. A method of quantifying the probability of the flight mission failure will also be presented.

드론의 운항 방식 및 교통환경은 기존의 항공교통이나 지상교통과는 상이하다. 드론의 안전 운항을 위한 교통 관리 체계 정립의 필요성이 대두되고 있다. 이에 따라 드론이 비행 중에 조우할 수 있는 위험 상황에 대하여 시뮬레이션에 의거하여 분석하고 대책을 수립하는 연구가 활발히 진행되고 있다. 특히 드론이 도심 환경에서 운항할 때 건물 사이로 발생하는 외풍에 영향을 받을 수 있으며, 이러한 외풍의 영향성을 예측하고 위험도를 분석하는 것이 필수적이다. 본 논문에서는 외풍 환경에서 비행 임무의 안전도를 평가하는 방법을 제시하였다. 외풍 조건을 입력할 수 있는 정밀 6자유도 비행 시뮬레이션을 구현하여 비행 임무 수행 중 외풍으로 인한 경로의 이탈, 자세각의 변화 등 그 영향성을 예측하였다. 비행 임무 실패 확률에 대해 정량화하는 방법을 제시하였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원 무인 항공기 안전지원 기술개발사업의 연구비 지원(과제번호 21USTR-B127901-05)에 의해 수행되었습니다.

References

  1. Ancel, E., Capristan, F. M. and Foster, J. V., "In-Time Non-Participant Casualty Risk Assessment to Support Onboard Decision Making for Autonomous Unmanned Aircraft," AIAA Aviation 2019 Forum, June 2019.
  2. Barr, L. C., Newman, R. L., Ancel, E., Belcastro, C. M., Foster, J. V., Evans, J. K. and Klyde, D. H., "Preliminary Risk Assessment for Small Unmanned Aircraft Systems," Air Transportation Integration & Operations (ATIO)-Aerospace Traffic Management (ATM) Conference, AIAA Aviation Forum, June 2017.
  3. Kwatny, H. G., Dongmo, J. E. T., Chang, B. C., Bajpai, G., Yasar, M. and Belcastro, C., "Nonlinear analysis of aircraft loss of control," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 4, 2017, pp. 149~162.
  4. Hartman, D. C., "Identification of Hazardous Flight Conditions to Establish a Safe Flight Envelope for Autonomous Multirotor Aircraft," AIAA Aviation Sci-Tech 2019 Forum, June 2017.
  5. Foster, J. V. and Hartman, D. C., "High-Fidelity Multi-Rotor Unmanned Aircraft System Simulation Development for Trajectory Prediction under Off-Nominal Flight Dynamics," Air Transportation Integration & Operations (ATIO) - Aerospace Traffic Management (ATM) Conference, AIAA Aviation Forum, June 2017.
  6. Ancel, E., Shih, A. T., Jones, S. M., Reveley, M. S., Luxhoj, J. T. and Evans, J. K., "Predictive safety analytics: inferring aviation accident shaping factors and causation," Journal of Risk Research, Vol. 18, No. 4, 2015, pp. 428~451. https://doi.org/10.1080/13669877.2014.896402
  7. Davoudi, B. and Duraisamy, K., "A Hybrid Blade Element Momentum Model for Flight Simulation of Rotary Wing Unmanned Aerial Vehicles," AIAA Aviation 2019 Forum, June 2019.
  8. Misiorowski, M., Gandhi, F. and Oberai, Assad, A., "A Computational Study on Rotor Interactional Effects for a Quadcopter in Edgewise Flight," American Helicopter Society 74th Annual Forum Proceedings, Phoenix, Arizona, May 2018.
  9. Park, S., Yoo, J., Lee, S. and Shin, S., "Real-Time Flight Simulation for Multirotor UAV Integrated with the Dynamic Inflow Aerodynamics," Journal of the American Helicopter Society, Vol. 66, No. 4, 2021, pp. 1~14.
  10. Sun, C., Liu, Y. C., Dai, R. and Grymin, D., "Two Approaches for Path Planning of Unmanned Aerial Vehicles with Avoidance Zones," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 8, 2017, pp. 2076~2083. https://doi.org/10.2514/1.G002314
  11. McWilliams, B., Newman, M. M. and Sprevak, D., "The Probability Distribution of Wind Velocity and Direction," Wind Engineering, Vol. 3, No. 4, 1979, pp. 269~273.
  12. Nguyen, D. D., Rohacs, J. and Rohacs, D., "Autonomous Flight Trajectory Control System for Drones in Smart City Traffic Management," ISPRS International Journal of Geo-Information, Vol. 10, No. 5, p. 338. https://doi.org/10.3390/ijgi10050338
  13. Guo, S., Jing, Z. W., Li, H., Lei, W. T. and He, Y. Y., "Gust response and body freedom flutter of a flying-wing aircraft with a passive gust alleviation device," Aerospace Science and Technology, Vol. 70, 2017, pp. 277~285. https://doi.org/10.1016/j.ast.2017.08.008