DOI QR코드

DOI QR Code

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren (Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University) ;
  • Jin, Yang (Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University) ;
  • Jinghui, Zhang (Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing) ;
  • Xiao, Yang (Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University) ;
  • Lei, Shi (Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University) ;
  • Dajing, Guo (Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University) ;
  • Yuanyi, Zheng (Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Haitao, Ran (Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University) ;
  • Zhongliang, Deng (Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University) ;
  • Lei, Chu (Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University)
  • Received : 2021.12.14
  • Accepted : 2022.06.17
  • Published : 2022.12.25

Abstract

Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

Keywords

Acknowledgement

Dr.Youliang Ren and Dr. Jin Yang contributed equally to this article as the co-first author. This work was supported by the Fellowship of China Postdoctoral Science Foundation (2021M693758) and Natural Science Foundation Postdoctoral Science Foundation Project of Chongqing (cstc2021jcyj-bsh0019). We are grateful to acknowledge Thomas Xue (University of Rochester, Rochester, USA) for proofreading this manuscript. Dr. Jing Zhang (Department of Hematology, Shanghai Tongren Hospital) for assistance with statistical analysis.

References

  1. Adjei-Sowah, E., Peng, Y., Weeks, J., Jonason, J.H., de Mesy Bentley, K.L., Masters, E., Morita, Y., Muthukrishnan, G., Cherian, P., Hu, X.E., McKenna, C.E., Ebetino, F.H., Sun, S., Schwarz, E.M. and Xie, C. (2021), "Development of bisphosphonate-conjugated antibiotics to overcome pharmacodynamic limitations of local therapy: Initial results with carbamate linked sitafloxacin and tedizolid", Antibiotics, 10. https://doi.org/10.3390/antibiotics10060732.
  2. Bierry, G., Jehl, F., Boehm, N., Robert, P., Prevost, G., Dietemann, J.L., Desal, H. and Kremer, S. (2008), "Macrophage activity in infected areas of an experimental vertebral osteomyelitis model: USPIO-enhanced MR imaging--feasibility study", Radiology, 248, 114-23. https://doi.org/10.1148/radiol.2481071260.
  3. Chen, Y., Jiang, L., Wang, R., Lu, M., Zhang, Q., Zhou, Y., Wang, Z., Lu, G., Liang, P., Ran, H., Chen, H. and Zheng, Y. (2014), "Injectable smart phase-transformation implants for highly efficient in vivo magnetic-hyperthermia regression of tumors", Adv Mater, 26, 7468-7473. https://doi.org/10.1002/adma.201402509.
  4. Chu, L., Ren, Y.L., Yang, J.S., Yang, J., Zhou, H., Jiang, H.T., Shi, L., Hao, D.J. and Deng, Z.L. (2020), "The combinations of multiple factors to improve the diagnostic sensitivity and specificity after artificial joint infection", J. Orthop. Surg. Res., 15, 161. https://doi.org/10.1186/s13018-020-01669-8.
  5. Dadfar, S.M., Roemhild, K., Drude, N.I., von Stillfried, S., Knuchel, R., Kiessling, F. and Lammers, T. (2019), "Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications", Adv. Drug Deliv. Rev., 138, 302-325. https://doi.org/10.1016/j.addr.2019.01.005.
  6. Diaz-Ledezma, C., Espinosa-Mendoza, R., Gallo, J., Glaudemans, A., Gomez-Garcia, F., Goodman, S., Kaminek, M., Le Roux, T. L.B., Llinas, A., Nieslanikova, E., Quinn, L., Sculco, P. and Svoboda, M. (2019), "General assembly, diagnosis, imaging: Proceedings of international consensus on orthopedic infections", J. Arthroplasty, 34, S215-223. https://doi.org/10.1016/j.arth.2018.09.073.
  7. Fan, X.L., Li, H.Y., Ye, W.Y., Zhao, M.Q., Huang, D.N., Fang, Y., Zhou, B.Q., Ren, K.F., Ji, J. and Fu, G.S. (2019), "Magaininmodified polydopamine nanoparticles for photothermal killing of bacteria at low temperature", Colloid Surface B, 183, 110423. https://doi.org/10.1016/j.colsurfb.2019.110423.
  8. Fu, W., He, W., Ren, Y., Li, Z., Liu, J., Liu, Y., Xie, Z., Xu, J., Bi, Q., Kong, M., Lee, C.C., Daiss, J.L., Muthukrishnan, G., Owen, J.R., Kates, S.L., Peng, J. and Xie, C. (2021), "Distinct expression trend of signature antigens of Staphylococcus aureus osteomyelitis correlated with clinical outcomes", J. Orthop. Res., 39, 265-273. https://doi.org/10.1002/jor.24961.
  9. Gudkov, S.V., Burmistrov, D.E., Serov, D.A., Rebezov, M.B., Semenova, A.A. and Lisitsyn, A.B. (2021), "Do iron oxide nanoparticles have significant antibacterial properties?", Antibiotics, 10. https://doi.org/10.3390/antibiotics10070884.
  10. Hanini, A., Schmitt, A., Kacem, K., Chau, F., Ammar, S. and Gavard, J. (2011), "Evaluation of iron oxide nanoparticle biocompatibility", Int. J. Nanomed., 6, 787-794. https://doi.org/10.2147/IJN.S17574.
  11. Irshad, R., Tahir, K., Li, B., Ahmad, A.A.R.S. and Nazir, S. (2017), "Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry", J. Photochem. Photobiol. B, 170, 241-246. https://doi.org/10.1016/j.jphotobiol.2017.04.020.
  12. Jacquier, A., Champsaur, P., Vidal, V., Stein, A., Monnet, O., Drancourt, M., Argenson, J.N., Raoult, D., Moulin, G. and Bartoli, J.M. (2004), "CT evaluation of total HIP prosthesis infection", J. Radiol., 85, 2005-2012. https://doi.org/10.1016/s0221-0363(04)97773-6.
  13. Karvelas, E.G., Lampropoulos, N.K., Benos, L.T., Karakasidis, T. and Sarris, I.E. (2021), "On the magnetic aggregation of Fe3O4 nanoparticles", Comput. Meth. Prog. Bio., 198, 105778. https://doi.org/10.1016/j.cmpb.2020.105778.
  14. Kavanagh, N., Ryan, E.J., Widaa, A., Sexton, G., Fennell, J., O'Rourke, S., Cahill, K.C., Kearney, C.J., O'Brien, F.J. and Kerrigan, S.W. (2018), "Staphylococcal osteomyelitis: Disease progression, treatment challenges and future directions", Clin. Microbiol. Rev., 31. https://doi.org/10.1128/CMR.00084-17.
  15. Leiblein, M., Koch, E., Winkenbach, A., Schaible, A., Nau, C., Buchner, H., Schroder, K., Marzi, I. and Henrich, D. (2020), "Size matters: Effect of granule size of the bone graft substitute (Herafill® ) on bone healing using Masquelet's induced membrane in a critical size defect model in the rat's femur", J. Biomed. Mater. Res. B Appl. Biomater., 108, 1469-1482. https://doi.org/10.1002/jbm.b.34495.
  16. Liang, B., Yu, K., Ling, Y., Kolios, M., Exner, A., Wang, Z., Hu, B., Zuo, G., Chen, Y. and Zheng, Y. (2019), "An artificially engineered "tumor bio-magnet" for collecting blood-circulating nanoparticles and magnetic hyperthermia", Biomater. Sci., 7, 1815-1824. https://doi.org/10.1039/c8bm01658e.
  17. Liang, B., Zuo, D., Yu, K., Cai, X., Qiao, B., Deng, R., Yang, J., Chu, L., Deng, Z., Zheng, Y. and Zuo, G. (2020), "Multifunctional bone cement for synergistic magnetic hyperthermia ablation and chemotherapy of osteosarcoma", Mater. Sci. Eng. C Mater. Biol. Appl., 108, 110460. https://doi.org/10.1016/j.msec.2019.110460.
  18. Liu, G., Gao, J., Ai, H. and Chen, X. (2013), "Applications and potential toxicity of magnetic iron oxide nanoparticles", Small, 9, 1533-1545. https://doi.org/10.1002/smll.201201531.
  19. Masters, E.A., Trombetta, R.P., de Mesy Bentley, K.L., Boyce, B.F., Gill, A.L., Gill, S.R., Nishitani, K., Ishikawa, M., Morita, Y., Ito, H., Bello-Irizarry, S.N., Ninomiya, M., Brodell, J.D., Jr., Lee, C.C., Hao, S.P., Oh, I., Xie, C., Awad, H.A., Daiss, J.L., Owen, J.R., Kates, S.L., Schwarz, E.M. and Muthukrishnan, G. (2019), "Evolving concepts in bone infection: Redefining "biofilm", "acute vs. chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy"", Bone Res., 7, 20. https://doi.org/10.1038/s41413-019-0061-z.
  20. Patel, A., Pavlou, G., Mujica-Mota, R. E. and Toms, A. D. (2015), "The epidemiology of revision total knee and hip arthroplasty in England and Wales: A comparative analysis with projections for the United States, A study using the National Joint Registry dataset", Bone Joint J., 97-b, 1076-1081. https://doi.org/10.1302/0301-620x.97b8.35170.
  21. Peng, J., Ren, Y., He, W., Li, Z., Yang, J., Liu, Y., Zheng, Z., Kates, S.L., Schwarz, E.M., Xie, C. and Xu, Y. (2017), "Epidemiological, clinical and microbiological characteristics of patients with post-traumatic osteomyelitis of limb fractures in southwest china: A hospital-based study", J. Bone Joint Infect, 2, 149-153. https://doi.org/10.7150/jbji.20002.
  22. Qiao, Y., Liu, X., Li, B., Han, Y., Zheng, Y., Yeung, K.W.K., Li, C., Cui, Z., Liang, Y., Li, Z., Zhu, S., Wang, X. and Wu, S. (2020), "Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing", Nat. Commun., 11, 4446. https://doi.org/10.1038/s41467-020-18268-0.
  23. Saeed, K., McLaren, A.C., Schwarz, E.M., Antoci, V., Arnold, W.V., Chen, A.F., Clauss, M., Esteban, J., Gant, V., Hendershot, E., Hickok, N., Higuera, C.A., Coraca-Huber, D.C., Choe, H., Jennings, J.A., Joshi, M., Li, W.T., Noble, P.C., Phillips, K.S., Pottinger, P.S., Restrepo, C., Rohde, H., Schaer, T.P., Shen, H., Smeltzer, M., Stoodley, P., Webb, J.C.J. and Witso, E. (2019), "2018 international consensus meeting on musculoskeletal infection: Summary from the biofilm workgroup and consensus on biofilm related musculoskeletal infections", J. Orthop. Res., 37, 1007-1017. https://doi.org/10.1002/jor.24229.
  24. Shi, S.F., Jia, J.F., Guo, X.K., Zhao, Y.P., Chen, D.S., Guo, Y.Y., Cheng, T. and Zhang, X.L. (2012), "Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells", Int. J. Nanomed., 7, 5593-5602. https://doi.org/10.2147/IJN.S34348.
  25. Shi, S.F., Jia, J.F., Guo, X.K., Zhao, Y.P., Chen, D.S., Guo, Y.Y. and Zhang, X.L. (2016), "Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles", Int. J. Nanomed., 11, 6499-6506. https://doi.org/10.2147/IJN.S41371.
  26. Stadelmann, V.A., Thompson, K., Zeiter, S., Camenisch, K., Styger, U., Patrick, S., McDowell, A., Nehrbass, D., Richards, R.G. and Moriarty, T.F. (2020), "Longitudinal time-lapse in vivo micro-CT reveals differential patterns of peri-implant bone changes after subclinical bacterial infection in a rat model", Sci. Rep., 10, 20901. https://doi.org/10.1038/s41598-020-77770-z.
  27. Tian, X., Zhang, L., Yang, M., Bai, L., Dai, Y., Yu, Z. and Pan, Y. (2018), "Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment", Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 10. https://doi.org/10.1002/wnan.1476.
  28. Wang, F., Yang, Y., Ling, Y., Liu, J., Cai, X., Zhou, X., Tang, X., Liang, B., Chen, Y., Chen, H., Chen, D., Li, C., Wang, Z., Hu, B. and Zheng, Y. (2017), "Injectable and thermally contractible hydroxypropyl methyl cellulose/Fe3O4 for magnetic hyperthermia ablation of tumors", Biomaterials, 128, 84-93. https://doi.org/10.1016/j.biomaterials.2017.03.004.
  29. Weissleder, R., Stark, D.D., Engelstad, B.L., Bacon, B.R., Compton, C.C., White, D.L., Jacobs, P. and Lewis, J. (1989), "Superparamagnetic iron oxide: Pharmacokinetics and toxicity", AJR Am. J. Roentgenol, 152, 167-173. https://doi.org/10.2214/ajr.152.1.167.
  30. Wu, M.C., Deokar, A.R., Liao, J.H., Shih, P.Y. and Ling, Y.C. (2013), "Graphene-based photothermal agent for rapid and effective killing of bacteria", ACS Nano, 7, 1281-1290. https://doi.org/10.1021/nn304782d.
  31. Xu, C., Zheng, Y., Gao, W., Xu, J., Zuo, G., Chen, Y., Zhao, M., Li, J., Song, J., Zhang, N., Wang, Z., Zhao, H. and Mei, Z. (2015), "Magnetic hyperthermia ablation of tumors using injectable Fe3O4/Calcium phosphate cement", ACS Appl. Mater. Interf., 7, 13866-75. https://doi.org/10.1021/acsami.5b02077.
  32. Xu, X., Liu, X., Tan, L., Cui, Z., Yang, X., Zhu, S., Li, Z., Yuan, X., Zheng, Y., Yeung, K.W.K., Chu, P. K. and Wu, S. (2018), "Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods", Acta Biomater, 77, 352-364. https://doi.org/10.1016/j.actbio.2018.07.030.
  33. Yang, Y., He, P., Wang, Y., Bai, H., Wang, S., Xu, J. F. and Zhang, X. (2017), "Supramolecular radical anions triggered by bacteria in situ for selective photothermal therapy", Angew Chem. Int. Ed. Engl., 56, 16239-16242. https://doi.org/10.1002/anie.201708971.
  34. Yu, K., Liang, B., Zheng, Y., Exner, A., Kolios, M., Xu, T., Guo, D., Cai, X., Wang, Z., Ran, H., Chu, L. and Deng, Z. (2019), "PMMA-Fe3O4 for internal mechanical support and magnetic thermal ablation of bone tumors", Theranostics, 9, 4192-4207. https://doi.org/10.7150/thno.34157.
  35. Yulia R. Mukhortova, A.S.P., Roman V. Chernozem, Igor O. Pariy, Elizaveta A. Akoulina, Irina V. Demianova, Irina I. Zharkova, Yurii F. Ivanov, Dmitriy V. Wagner, Anton P. Bonartsev, Roman A. Surmenev, Maria A. Surmeneva, (2022), "Fabrication and characterization of a magnetic biocomposite of magnetite nanoparticles and reduced graphene oxide for biomedical applications", Nano Struct. Nano Objects, 29. https://doi.org/2352-507X.