DOI QR코드

DOI QR Code

경험적 분위사상법을 이용한 미국 지표 기온 기반 농업기후지수의 지역 규모 계절 예측성 개선

Improvement in Regional-Scale Seasonal Prediction of Agro-Climatic Indices Based on Surface Air Temperature over the United States Using Empirical Quantile Mapping

  • 송찬영 (부산대학교 BK21 지구환경시스템 교육연구단 대기환경과학과) ;
  • 안중배 (부산대학교 대기환경과학과) ;
  • 이경도 (국립농업과학원 기후변화평가과)
  • Chan-Yeong, Song (Department of Atmospheric Sciences, BK21 School of Earth and Environmental Systems, Pusan National University) ;
  • Joong-Bae, Ahn (Department of Atmospheric Sciences, Pusan National University) ;
  • Kyung-Do, Lee (Climate Change Assessment Division, National Institute of Agricultural Sciences)
  • 투고 : 2022.10.06
  • 심사 : 2022.12.06
  • 발행 : 2022.12.30

초록

미국은 전 세계 주요 곡물(밀, 옥수수, 콩 등)의 생산 및 수출 국가로 알려져 있다. 따라서 신뢰할 만한 기상 예측 정보를 바탕으로 해당 지역에 대한 작황을 추정하는 것은 우리나라의 곡물 수급을 안정적으로 계획하기 위해서 중요하다. 본 연구에서는 지역 규모의 일 기온 및 이를 기반으로 산출되는 농업기후지수의 계절 예측성을 향상시키는 데 목적을 두었다. 이를 위해 먼저 역학적 규모축소법을 위한 지역기후모형으로 WRF가 사용되었으며, 해당 모형의 초기 및 측면 경계조건으로 PNU CGCM에서 생산된 시간 별 전지구 예측자료가 활용되었다. WRF의 적분은 22년(2000~2021년) 동안 매년 하반기를 포함하는 기간(6~12월)에 대해 수행되었다. 본 연구에서는 WRF에 의해 모의된 일 평균⋅최저⋅최고기온에 대해 EQM을 적용하여 모형이 갖는 편의를 보정하였다. EQM을 이용하여 보정된(보정되지 않은) 자료들은 WRF_C (WRF_UC)로 명명하였다. WRF_UC는 미국 내 대부분의 지역에서 일 최저기온(최고기온)을 과대(과소) 모의했는데, 이는 저온(고온) 범위를 과소 모의한 특징에서 비롯되었다. WRF_C는 WRF_UC에 나타난 일 평균⋅최저⋅최고기온의 편의가 감소하고 공간분포에 대한 예측성이 향상되었기 때문에 결과적으로 일 기온을 기반으로 산출되는 농업기후지수의 예측성 향상을 유도했다.

The United States is one of the largest producers of major crops such as wheat, maize, and soybeans, and is a major exporter of these crops. Therefore, it is important to estimate the crop production of the country in advance based on reliable long- term weather forecast information for stable crops supply and demand in Korea. The purpose of this study is to improve the seasonal predictability of the agro-climatic indices over the United States by using regional-scale daily temperature. For long-term numerical weather prediction, a dynamical downscaling is performed using Weather Research and Forecasting (WRF) model, a regional climate model. As the initial and lateral boundary conditions of WRF, the global hourly prediction data obtained from the Pusan National University Coupled General Circulation Model (PNU CGCM) are used. The integration of WRF is performed for 22 years (2000-2021) for period from June to December of each year. The empirical quantile mapping, one of the bias correction methods, is applied to the timeseries of downscaled daily mean, minimum, and maximum temperature to correct the model biases. The uncorrected and corrected datasets are referred WRF_UC and WRF_C, respectively in this study. The daily minimum (maximum) temperature obtained from WRF_UC presents warm (cold) biases over most of the United States, which can be attributed to the underestimated the low (high) temperature range. The results show that WRF_C simulates closer to the observed temperature than WRF_UC, which lead to improve the long- term predictability of the temperature- based agro-climatic indices.

키워드

과제정보

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두분의 심사위원께 감사드립니다. 이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었습니다.

참고문헌

  1. Ahn, J.-B., J.-Y. Hong, and K.-M. Shim, 2010: Agro-Climatic Indices Changes over the Korean Peninsula in CO2 Doubled Climate Induced by Atmosphere-Ocean-Land-Ice Coupled General Circulation Model. Korean Journal of Agricultural and Forest Meteorology 12(1), 11-22. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2010.12.1.011
  2. Ahn, J.-B., K.-M. Shim, M.-P. Jung, H.-G. Jeong, Y.-H. Kim, and E.-S. Kim, 2018: Predictability of temperature over South Korea in PNU CGCM and WRF hindcast. Atmosphere 28(4), 479-490. https://doi.org/10.14191/Atmos.2018.28.4.479 (in Korean with English abstract)
  3. Chen, F., and J. Dudhia, 2001: Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly Weather Review 129(4), 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:Caalsh>2.0.Co;2
  4. Choi, S.-C., J.-K. Kim, and J. Yang, 2022: The Current Status of Korean Agriculture in the World. Korea Rural Economic Institute, 194pp.
  5. Chung, U., S. Gbegbelegbe, B. Shiferaw, R. Robertson, J. I. Yun, K. Tesfaye, G. Hoogenboom, and K. Sonder, 2014: Modeling the effect of a heat wave on maize production in the USA and its implications on food security in the developing world. Weather and Climate Extremes 5-6, 67-77. https://doi.org/https://doi.org/10.1016/j.wace.2014.07.002
  6. DelSole, T., and J. Shukla, 2006: Specification of Wintertime North American Surface Temperature. Journal of Climate 19(12), 2691-2716. https://doi.org/10.1175/jcli3704.1
  7. Donat, M. G., L. V. Alexander, H. Yang, I. Durre, R. Vose, R. J. H. Dunn, K. M. Willett, E. Aguilar, M. Brunet, J. Caesar, B. Hewitson, C. Jack, A. M. G. Klein Tank, A. C. Kruger, J. Marengo, T. C. Peterson, M. Renom, C. Oria Rojas, M. Rusticucci, J. Salinger, A. S. Elrayah, S. S. Sekele, A. K. Srivastava, B. Trewin, C. Villarroel, L. A. Vincent, P. Zhai, X. Zhang, and S. Kitching, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research: Atmospheres 118(5), 2098-2118. https://doi.org/10.1002/jgrd.50150
  8. Dudhia, J., 1989: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. Journal of the Atmospheric Sciences 46(20), 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:Nsocod>2.0.Co;2
  9. Feng, S., and Q. Hu, 2004: Changes in agrometeorological indicators in the contiguous United States: 1951-2000. Theoretical and Applied Climatology 78(4), 247-264. https://doi.org/10.1007/s00704-004-0061-8
  10. Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations-a comparison of methods. Hydrology and Earth System Sciences 16(9), 3383-3390. https://doi.org/10.5194/hess-16-3383-2012 HESS
  11. Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Holm, M. Janiskova, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.-N. Thepaut, 2020: The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999-2049. https://doi.org/10.1002/qj.3803
  12. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences 42(2), 129-151.
  13. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review 134(9), 2318-2341. https://doi.org/10.1175/mwr3199.1
  14. Hunke, E. C., and J. K. Dukowicz, 1997: An Elastic-Viscous-Plastic Model for Sea Ice Dynamics. Journal of Physical Oceanography 27(9), 1849-1867. https://doi.org/10.1175/1520-0485(1997)027<1849:Aevpmf>2.0.Co;2
  15. Hur, J., and J.-B. Ahn, 2015: The change of first-flowering date over South Korea projected from downscaled IPCC AR5 simulation: peach and pear. International Journal of Climatology 35(8), 1926-1937. https://doi.org/10.1002/joc.4098
  16. Hur, J., Y.-S. Kim, S. Jo, K.-M. Shim, J.-B. Ahn, M.-J. Choi, Y.-H. Kim, M. Kang, and W.-J. Choi, 2021: Estimation of Waxy Corn Harvest Date over South Korea Using PNU CGCM-WRF Chain. Korean Journal of Agricultural and Forest Meteorology 23(4), 405-414. https://doi.org/10.5532/KJAFM.2021.23.4.405 (in Korean with English abstract)
  17. Im, E.-S., S. Ha, L. Qiu, J. Hur, S. Jo, and K.-M. Shim, 2021: An Evaluation of Temperature-Based Agricultural Indices Over Korea From the High-Resolution WRF Simulation. Frontiers in Earth Science 9(357). https://doi.org/10.3389/feart.2021.656787
  18. Jo, S., K.-M. Shim, J. Hur, Y.-S. Kim, and J.-B. Ahn, 2020: Future Changes of Agro-Climate and Heat Extremes over S. Korea at 2 and 3 ℃ Global Warming Levels with CORDEX-EA Phase 2 Projection. Atmosphere 11(12), 1336. https://doi.org/10.3390/atmos11121336
  19. Kain, J. S., 2004: The Kain-Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology 43(1), 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2
  20. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR community climate model (CCM3). Tech Rep. No. NCAR/TN-420+STR, National Center for Atmospheric Research, 152pp. [Available online at https://opensky.ucar.edu/islandora/object/technotes:187]
  21. Kim, H.-J., and J.-B. Ahn, 2015: Improvement in Prediction of the Arctic Oscillation with a Realistic Ocean Initial Condition in a CGCM. Journal of Climate 28(22), 8951-8967. https://doi.org/10.1175/jcli-d-14-00457.1
  22. Kim, Y.-H., E.-S. Kim, M.-J. Choi, K.-M. Shim, and J.-B. Ahn, 2019: Evaluation of Long-Term Seasonal Predictability of Heatwave over South Korea Using PNU CGCM-WRF Chain. Atmosphere 29(5), 671-687. https://doi.org/10.14191/Atmos.2019. 29.5.671 (in Korean with English abstract)
  23. Kim, Y.-H., M.-J. Choi, K.-M. Shim, J. Hur, S. Jo, and J. B. Ahn, 2021: A Study on the Predictability of the Number of Days of Heat and Cold Damages by Growth Stages of Rice Using PNU CGCM-WRF Chain in South Korea. Atmosphere 31(5), 577-592. https://doi.org/10.14191/Atmos.2021.31.5.577 (in Korean with English abstract)
  24. Kukal, M. S., and S. Irmak, 2018: U.S. Agro-Climate in 20th Century: Growing Degree Days, First and Last Frost, Growing Season Length, and Impacts on Crop Yields. Scientific Reports 8(1), 6977. https://doi.org/10.1038/s41598-018-25212-2
  25. Leng, G., 2021: Maize yield loss risk under droughts in observations and crop models in the United States. Environmental Research Letters 16, 024016. https://doi.org/10.1088/1748-9326/abd500
  26. Lim, E.-P., H. H. Hendon, S. Langford, and O. Alves, 2012: Improvements in POAMA2 for the prediction of major climate drivers and south eastern Australian rainfall. CAWCR Tech. Rep. No. 051, Centre for Australian Weather and Climate Research, 23pp. [Available online at https://www.cawcr.gov.au/technical-reports/CTR_051.pdf]
  27. Lu, Y., and L. Kueppers, 2015: Increased heat waves with loss of irrigation in the United States. Environmental Research Letters 10(6), 064010. https://doi.org/10.1088/1748-9326/10/6/064010
  28. MacLachlan, C., A. Arribas, K. A. Peterson, A. Maidens, D. Fereday, A. A. Scaife, M. Gordon, M. Vellinga, A. Williams, R. E. Comer, J. Camp, P. Xavier, and G. Madec, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quarterly Journal of the Royal Meteorological Society 141(689), 1072-1084. https://doi.org/10.1002/qj.2396
  29. McMaster, G. S., and W. W. Wilhelm, 1997: Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology 87(4), 291-300. https://doi.org/https://doi.org/10.1016/S0168-1923(97)00027-0
  30. Michaelsen, J., 1987: Cross-Validation in Statistical Climate Forecast Models. Journal of Applied Meteorology and Climatology 26(11), 1589-1600. https://doi.org/10.1175/1520-0450(1987)026<1589:Cviscf>2.0.Co;2
  31. Mishra, V., and K. A. Cherkauer, 2010: Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agricultural and Forest Meteorology 150(7), 1030-1045. https://doi.org/10.1016/j.agrformet.2010.04.002
  32. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres 102(D14), 16663-16682. https://doi.org/10.1029/97JD00237
  33. Molteni, F., T. Stockdale, M. Balmaseda, G. Balsamo, R. Buizza, L. Ferranti, L. Magnusson, K. Mogensen, T. Palmer, and F. Vitart, 2011: The new ECMWF seasonal forecast system (System 4). ECMWF Tech. Memo. No. 656, European Centre for Medium Range Weather Forecasts, 49pp. [Available online at https://www.ecmwf.int/sites/default/files/elibrary/2011/11209-new-ecmwf-seasonal-forecast-system-system-4.pdf]
  34. Monier, E., L. Xu, and R. Snyder, 2016: Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation. Environmental Research Letters 11(5), 055001. https://doi.org/10.1088/1748-9326/11/5/055001
  35. Moonen, A. C., L. Ercoli, M. Mariotti, and A. Masoni, 2002: Climate change in Italy indicated by agrometeorological indices over 122 years. Agricultural and Forest Meteorology 111(1), 13-27. https://doi.org/10.1016/S0168-1923(02)00012-6
  36. Mueller, B., M. Hauser, C. Iles, R. H. Rimi, F. W. Zwiers, and H. Wan, 2015: Lengthening of the growing season in wheat and maize producing regions. Weather and Climate Extremes 9, 47-56. https://doi.org/https://doi.org/10.1016/j.wace.2015.04.001
  37. Pacanowski, R. C., and S. M. Griffies, 2000: MOM 3.0 Manual. NOAA/GFDL, 682pp. [Available online at https://www.gfdl.noaa.gov/wp-content/uploads/files/model_development/ocean/mom3_manual.pdf]
  38. Paulson, C. A., 1970: The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer. Journal of Applied Meteorology and Climatology 9(6), 857-861. https://doi.org/10.1175/1520-0450(1970)009<0857:Tmrows>2.0.Co;2
  39. Piani, C., J. O. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology 99, 187-192. https://doi.org/10.1007/s00704-009-0134-9
  40. RDA, 2014: The Construction of Agrometeorological Information and Climate Modeling in Major Crop Production Area. Rural Development Administration, 138pp. [Available online at https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201400011432]
  41. RDA, 2018: Production of Dissemination of Agroclimate Information in Major Crop Production Areas. Rural Development Administration, 86pp. [Available online at https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201800043070&dbt=TRKO]
  42. RDA, 2020: Development of Environment Information and Monitoring Service System for grain yield in foreign countries. Rural Development Administration, 232pp. [Available online at https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202000030378]
  43. Schlenker, W., and M. J. Roberts, 2009: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences, USA, 15594-15598. https://doi.org/10.1073/pnas.0906865106
  44. Shim, K.-M., G.-Y. Kim, K.-A. Roh, H.-C. Jeong, and D.-B. Lee, 2008: Evaluation of Agro-Climatic Indices under Climate Change. Korean Journal of Agricultural and Forest Meteorology 10(4), 113-120. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2008.10.4.113
  45. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. Tech Rep. No. NCAR/TN-468+STR, NCAR/TN-468+STR, National Center for Atmospheric Research, 88pp. [Available online at https://opensky.ucar.edu/islandora/object/technotes:500]
  46. Song, C.-Y., S.-H. Kim, and J.-B. Ahn, 2021: Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping. Atmosphere 31(5), 637-656. https://doi.org/10.14191/Atmos.2021.31.5.637 (in Korean with English abstract)
  47. Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology 456-457, 12-29. https://doi.org/10.1016/j.jhydrol.2012.05.052
  48. Themessl, M. J., A. Gobiet, and A. Leuprecht, 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. International Journal of Climatology 31(10), 1530-1544. https://doi.org/10.1002/joc.2168
  49. Themessl, M. J., A. Gobiet, and G. Heinrich, 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change 112(2), 449-468. https://doi.org/10.1007/s10584-011-0224-4