DOI QR코드

DOI QR Code

Dynamic deformation measurement in structural inspections by Augmented Reality technology

  • Jiaqi, Xu (Department of Civil, Construction & Environmental Engineering, University of New Mexico) ;
  • Elijah, Wyckoff (Department of Mechanical Engineering, University of New Mexico) ;
  • John-Wesley, Hanson (Department of Civil, Construction & Environmental Engineering, University of New Mexico) ;
  • Derek, Doyle (Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base) ;
  • Fernando, Moreu (Department of Civil, Construction & Environmental Engineering, University of New Mexico)
  • Received : 2022.06.24
  • Accepted : 2022.10.29
  • Published : 2022.12.25

Abstract

Structural Health Monitoring (SHM) researchers have identified Augmented Reality (AR) as a new technology that can assist inspections. Post-seismic structural inspections are conducted to evaluate the safety level of the damaged structures. Quantification of nearby structural changes over short-term and long-term periods can provide building inspectors with information to improve their safety. This paper proposes a Time Machine Measure (TMM) application based on an Augmented Reality (AR) Head-Mounted-Device (HMD) platform. The primary function of TMM is to restore the saved meshes of a past environment and overlay them onto the real environment so that inspectors can intuitively measure dynamic structural deformation and other environmental movements. The proposed TMM application was verified by demo experiments simulating a real inspection environment.

Keywords

Acknowledgement

The financial support for this research is provided in part by the Air Force Research Laboratory (AFRL, Grant number FA9453-18-2-0022), and the New Mexico Consortium (NMC, Grant number 2RNA6.) The authors appreciate the discussion and feedback from the Department of Emergency Management in the City of Albuquerque. The conclusions of this research represent solely those of the authors.

References

  1. Burachek, V., Khomushko, D., Tereshchuk, O., Kryachok, S. and Belenok, V. (2022), "Analysis of development tendencies of metrological technologies to control rangefinders of an electronic distance measurement instruments", Adv. Geodesy Geoinform., 71(1), e13. https://doi.org/10.24425/gac.2022.140504
  2. Carbotte, K. (2018), "Kopin's Golden-i Infinity is a Wearable Display for Smartphones, Tablets". https://www.tomshardware.com/news/kopin-golden-i-infinity-smart-display,37138.html
  3. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T. and Xu, Y.Q. (2006), "Color harmonization", In: ACM SIGGRAPH 2006 Papers, pp. 624-630. https://doi.org/10.1145/1179352.1141933
  4. DAQRI Smart Glasses (2017). https://daqri.com/products/smart-glasses/
  5. Diao, F., Wang, R., Xiong, X. and Liu, C. (2021), "Overlapped postseismic deformation caused by afterslip and viscoelastic relaxation following the 2015 Mw 7.8 Gorkha (Nepal) earthquake", J. Geophys. Res.: Solid Earth, 126(3). https://doi.org/10.1029/2020JB020378
  6. Epson (2017a), Adjustable, Highly Transparent Smart Glasses for Multi-User Applications. https://epson.com/For-Work/Wearables/Smart-Glasses/Moverio-BT-350-Smart-Glasses/p/V11H837020
  7. Epson (2017b), Durable Smart Headset Built for Industrial, Hands-Free Applications. https://epson.com/For-Work/Wearables/Smart-Glasses/MoverioPro-BT-2200-Smart-Headset/p/V11H853020#
  8. Everysight Raptor (2017). https://everysight.com/
  9. Glass Enterprise Edition 2 Tech Specs (2019). https://www.google.com/glass/tech-specs/
  10. Glassup F4 (2017). https://www.glassup.com/en/f4/
  11. He, K., Xu, C. and Wen, Y. (2022), "Coseismic and early postseismic deformations due to the 2019 earthquake sequence in Ridgecrest, California", Geophys. J. Int., 230(2), 957-975. https://doi.org/10.1093/GJI/GGAC103
  12. Holmgren, M., Johansson, D. and Andersson, K. (2014), "A web-based time machine with augmented reality", In: IEEE Conference on Local Computer Networks.
  13. Jin, Z. and Fialko, Y. (2021), "Coseismic and early post-seismic deformation due to the 2021 M7. 4 Maduo (China) earthquake", Geophysical Research Letters, 48(21), e2021GL095213. https://doi.org/10.1029/2021GL095213
  14. Joshi, B. (2017), "XML Serialization", In: Beginning XML with C# 7, pp. 211-237, Berkeley, CA, USA. https://doi.org/10.1007/978-1-4842-3105-0_8
  15. Kamat, V.R. and El-Tawil, S. (2005), "Rapid post-disaster evaluation of building damage using augmented situational visualization", In: Construction Research Congress 2005: Broadening Perspectives, pp. 1-10.
  16. Kamat, V.R. and El-Tawil, S. (2007), "Evaluation of augmented reality for rapid assessment of earthquake-induced building damage", J. Comput. Civil Eng., 21(5), 303-310. https://doi.org/10.1061/(ASCE)0887-3801(2007)21:5(303)
  17. Lim, C.H., Zhang, L. and Amaludin, A.E. (2021), "Topographic Survey and Modelling Using Photogrammetry: A Comparison against Electronic Distance Measurement (EDM) Method", ASM Sci. J., 16. https://doi.org/10.32802/asmscj.2021.720
  18. Lu, L., Duan, Y.F., Spencer Jr, B.F., Lu, X. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control Health Monitor., 24(10), e1986. https://doi.org/10.1002/stc.1986
  19. Magic Leap 1 (2018). https://www.magicleap.com/en-us/magic-leap-1
  20. Mandler, E., Pintori, F., Gualandi, A., Anderlini, L., Serpelloni, E. and Belardinelli, M.E. (2021), "Post-Seismic Deformation Related to the 2016 Central Italy Seismic Sequence From GPS Displacement Time-Series", J. Geophys. Res.: Solid Earth, 126(9), e2021JB022200. https://doi.org/10.1029/2021JB022200
  21. Microsoft (2019), Environment Considerations for HoloLens. https://rb.gy/kb5xay
  22. Realwear (2017), HMT-1: The World's Leading Hands-Free Remote Collaboration Tool. https://www.realwear.com/products/hmt-1/
  23. Realwear (2018), HMT-1Z1: The World's Only Intrinsically Safe Hands-Free Remote Collaboration Tool. https://www.realwear.com/products/hmt-1z1/
  24. Rick, J.W. (2018), "Total Station", In: The Encyclopedia of Archaeological Sciences, pp. 1-3. https://doi.org/10.1002/9781119188230.saseas0205
  25. Sahu, R.K. (2021), "A review on application of laser tracker in precision positioning metrology of particle accelerators", Precision Eng., 71, 232-249. https://doi.org/10.1016/j.precisioneng.2021.03.015
  26. Shan, J., Ouyang, Y., Yuan, H. and Shi, W. (2016), "Seismic data-driven identification of linear models for building structures using performance and stabilizing objectives", Comput.-Aided Civil Infrastr. Eng., 31(11), 846-870. https://doi.org/10.1111/mice.12227
  27. Okada, S. and Takai, N. (2000), "Classifications of structural types and damage patterns of buildings for earthquake field investigation", Proceedings of the 12th World Conference on Earthquake Engineering, Vol. 30.
  28. Solos Smartglasses (2018).
  29. Sony, S., Laventure, S. and Sadhu, A. (2019), "A literature review of next-generation smart sensing technology in structural health monitoring", Struct. Control Health Monitor., 26(3), e2321. https://doi.org/10.1002/STC.2321
  30. The Mixed Reality Toolkit (MRTK) (2020). https://docs.microsoft.com/en-us/windows/mixed-reality/mrtkunity/?view=mrtkunity-2021-05
  31. ThirdEye Gen X2 Mixed Reality Smart Glasses (2019). https://thirdeyegen.com/x2-smart-glasses
  32. Toshiba DynaEdge AR100 Head Mounted Display (2018). https://us.dynabook.com/smartglasses/products/index.html
  33. Vuzix M400 Augmented Reality (AR) Smart Glasses (2020). https://www.vuzix.com/products/m400-smart-glasses
  34. Worrel, J. (2017), "ODG Unveils R8 and R9 Smartglasses at CES". https://www.fudzilla.com/news/42622-odg-unveils-r8-and-r9-smartglasses-at-ces
  35. Xu, J., Doyle, D. and Moreu, F. (2022), "State of the Art of Augmented Reality (AR) Capabilities for Civil Infrastructure Applications (in Submission)", Engineering Reports. arXiv preprint arXiv:2110.08698
  36. Yekrangnia, M., Torabizadeh, A. and Brzev, S. (2021), "Post-Earthquake Damage Assessment of Buildings: Comprehensive Experimentally-Based Maximum Drift Ratio Predictive Model Based on Residual Drift Ratio", J. Earthq. Eng., 1-45. https://doi.org/10.1080/13632469.2021.1961934
  37. You, T., Wang, W., Fang, C. and Chen, Y. (2022), "Rapid probabilistic loss assessment of buildings based on post-earthquake structural deformation conditions", J. Build. Eng., 45, p. 103629. https://doi.org/10.1016/j.jobe.2021.103629
  38. Zoellner, M., Pagani, A., Pastarmov, Y., Wuest, H. and Stricker, D. (2008), "Reality Filtering: A Visual Time Machine in Augmented Reality", In: The 9th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, pp. 71-77. https://doi.org/10.2312/VAST/VAST08/071-077