DOI QR코드

DOI QR Code

맞춤형화장품 베이스로서 나노에멀젼 앰플의 물성 평가 및 피부타입에 따른 만족도 평가

Evaluation of Physical Properties of Nanoemulsion Ampoule as Customized Cosmetic Bases and Evaluation of Satisfaction According to Skin Type

  • 김세연 (제주대학교 화학.코스메틱스학과) ;
  • 안형근 (제주대학교 화학.코스메틱스학과) ;
  • 김자영 ((주)사임당화장품 피부과학연구소) ;
  • 윤경섭 (제주대학교 화학.코스메틱스학과)
  • Se-Yeon, Kim (Department of Chemistry and Cosmetics, College of Natural Science, Jeju National University) ;
  • Hyung Guen, An (Department of Chemistry and Cosmetics, College of Natural Science, Jeju National University) ;
  • Ja Young, Kim (Skin Science R&D Center, Saimdamg Cosmetics, Co., Ltd.) ;
  • Kyung-Sup, Yoon (Department of Chemistry and Cosmetics, College of Natural Science, Jeju National University)
  • 투고 : 2022.11.08
  • 심사 : 2022.12.12
  • 발행 : 2022.12.30

초록

맞춤형화장품은 사회환경 변화와 개성을 중시하는 트렌드에 따른 화장품으로서 지속해서 언급되고 있다. 이에 본 연구에서는 나노에멀젼 제형과 앰플 제형의 비율을 달리함으로써 피부타입에 대응한 나노에멀젼 앰플 4 종을 제조하여, 맞춤형화장품 베이스로서의 적용 가능성을 확인하고자 하였다. 휘발잔분량을 달리한 나노에멀젼 앰플 4 종에 대해, 90 일 동안의 시간에 따른 입자크기, 다분산지수, 제타전위 및 점도를 측정하였으며, 콜로이드 분산계의 안정성 평가방법으로 터비스캔을 측정하였으며, 마지막으로 인체 사용성 만족도를 평가하였다. 결과, 나노에멀젼 앰플 4 종은 지성용 시험품보다 건성용 시험품에서 휘발잔분량이 많음을 확인하였다. pH는 6.41 ~ 6.88 범위이며, 입자크기는 170 ~ 174 nm 범위로 90 일 경과 후 변화는 최대 1.2% 이내로서 입자크기 안정성에는 특이점이 없었다. 다분산지수는 모든 시험품에서 0.21 보다 작은 수치 내에서의 변화를 나타냄으로써 거의 일정하며, 단분산에 가까운 입도 분포를 보이는 것으로 확인하였다. 제타전위는 초기에 4종의 시험품 모두 -63 mV 이상이며, 시간에 따라 약간 감소 경향을 보이나 최대 2.5% 감소하는 정도로 변화가 거의 없었다. 점도는 초기에 4,100 ~ 5,100 cps 범위로 시간에 따라 감소 경향을 보여 최대 37.7% 감소하였다. 터비스캔 측정에서는 안정성의 척도인 turbiscan stability index가 모두 1.0 이하로 분산 안정성을 보였다. 피부타입에 대응한 나노에멀젼 앰플 4 종의 사용성 만족도 평가(6 점법)에서는 지성용 시험품(5.42 ± 0.67 점) > 중지성용 시험품(5.36 ± 0.67 점) > 중건성용 시험품(5.15 ± 0.69 점) > 건성용 시험품(4.75 ± 0.75 점)의 순으로 평가되었다. 나노에멀젼 앰플 4 종은 물성적으로 안정하며, 피부타입에 따른 맞춤형화장품 베이스로서 적용 가능성을 확인하였으며, 다양한 방법으로 확장 가능성도 기대된다.

Customized cosmetics are continuously mentioned as cosmetics in response to changes in the social environment and trends that emphasize individuality. Therefore, in this study, four types of nanoemulsion ampoules corresponding to skin types were prepared by different ratios of nanoemulsion formulation and ampoule formulation, and the applicability as a customized cosmetic base was checked. Particle size, polydispersity index, zeta potential, and viscosity according to time for 90 d were measured for four nanoemulsion ampoules with different volatile residues, and turbiscan was measured as a method for evaluating the stability of a colloidal dispersion system. Finally, human usability satisfaction was evaluated. As a result, it was confirmed that four kinds of nanoemulsion ampoules had a higher amount of volatile residue in the dry skin test product than in the oily skin test product. The pH was in the range of 6.41 to 6.88, and the particle size was in the range of 170 to 174 nm, and the change after 90 d was within 1.2% of the maximum, and there was no specificity in particle size stability. It was confirmed that the polydispersity index was almost constant, and showed a particle size distribution close to monodispersity by showing a change within a value smaller than 0.21 in all test products. The zeta potential was initially -63 mV or more for all four types of test products, and although it showed a slight decrease with time, there was little change to the extent of a maximum decrease of 2.5%. Viscosity was initially in the range of 4,100 to 5,100 cps and showed a decreasing trend with time, showing a maximum decrease of 37.7%. In the turbiscan measurement, the turbiscan stability index, a measure of stability, was all below 1.0, indicating dispersion stability. In the usability satisfaction evaluation (6 points) of 4 nanoemulsion ampoules corresponding to skin type, oily skin product (5.42 ± 0.67 points) > neutral oily skin product (5.36 ± 0.67 points) > neutral dry skin product (5.15 ± 0.69 point) > dry skin product (4.75 ± 0.75 points) in the order of evaluation. Four types of nanoemulsion ampoules are physically stable and have confirmed their applicability as a customized cosmetic base according to skin type, and are expected to expand in various ways.

키워드

과제정보

2022 Jeju Industry-University Fusion District Project LAB, and this research was financially supported by the Ministry of Trade, Industry and Energy, Korea, under the "Regional Innovation Cluster Development Program (R&D, P0015299)" supervised by the Korea Institute for Advancement of Technology (KIAT).

참고문헌

  1. E. J. Go, Competition in the global beauty industry is changing, LGERI, 1 (2017). 
  2. Customized cosmetics global market trend research and analysis fact sheet, MFDS (2022). 
  3. K. S. Yoon, In the era of customized consumption, the center shifted to customized cosmetics, K. Beauty Sci., 2, 30 (2019). 
  4. J. Baek, 2019 Skin characteristics bank construction business report by country: skin measurement result report, eds. Y. Lim, J. Kim, and S. Yang, 1, KCII, Gyeonggi-do (2019). 
  5. H. G. An, T. I. Hyeon, and K. S. Yoon, Evaluation of physical properties of liposome essences as customized cosmetic bases and evaluation of satisfaction according to skin type, J. Soc. Cosmet. Sci. Korea, 48(1), 1 (2022). 
  6. C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, Nano-emulsions, Curr. Opin. Colloid Interface Sci., 10(3-4), 102 (2005).  https://doi.org/10.1016/j.cocis.2005.06.004
  7. D. J. McClements, Food emulsions : principles, practices, and techniques, 2, CRC Press (2004). 
  8. Y. J. Jo, S. B. Lee, J. K. Lee, and Y. J. Kwon. Preparation of nanoemulsions containing curcumin by high pressure homogenization. Food Eng. Prog., 18(4), 341 (2014).  https://doi.org/10.13050/foodengprog.2014.18.4.341
  9. K. S. Yoon, Cosmetology, ed. G. B. Jo, 1, Kuminsa, Seoul (2021). 
  10. S. J. Yang, T. Y. Kim, C. M. Lee, K. S. Lee, and K. S. Yoon, Study on the stability of biotin-containing nanoliposome, J. Soc. Cosmet. Sci. Korea, 46(2), 133 (2020).  https://doi.org/10.15230/SCSK.2020.46.2.133
  11. T. I. Hyeon and K. S. Yoon, Skin absorption and physical property of ceramide-added ethosome, Journal of the Korean Applied Science and Technology, 38(3), 801 (2021).  https://doi.org/10.12925/JKOCS.2021.38.3.801
  12. E. J. Park, E. S. Lee, and S. T. Hong, A study on the formation and Ostwald ripening stability of nanoemulsion with various emulsifiers, J. of Korean Oil Chemists' Soc., 32(3), 536 (2015).  https://doi.org/10.12925/jkocs.2015.32.3.536
  13. D. Li, L. Li, N. Xiao, M. Li, and X. Xie, Physical properties of oil-in-water nanoemulsions stabilized by OSA-modified starch for the encapsulation of lycopene, Colloids Surf. A, 552, 59 (2018).  https://doi.org/10.1016/j.colsurfa.2018.04.055
  14. K. Fuentes, C. Matamala, N. Martnez, R. N. Zniga, and E. Troncoso, Comparative study of physicochemical properties of nanoemulsions fabricated with natural and synthetic surfactants, Processes, 9(11), 1 (2021). 
  15. L. S. Baumann, The skin type solution, ed. P. Rappaport, 1, Bantam Dell, New York (2006). 
  16. J. Y. Choi, Y. J. Choi, J. H. Nam, H. J. Jung, G. Y. Lee, and W. S. Kim, Identifying skin type using the Baumann skin type questionnaire in Korea women who visited a dermatologic clinic, Korean J. Dermatol., 54(6), 422 (2016). 
  17. T, Tadros, P. Izquierdob, J. Esquenab, and C. Solansb, Formation and stability of nano-emulsions, Adv. Colloid Interface Sci., 108-109, 303 (2004).  https://doi.org/10.1016/j.cis.2003.10.023
  18. W. G. Cho, H. J. Yang, and S. N. Park, Ostwald ripening in hydrogenated lecithin-stabilized oil-in-water nano-emulsions, J. Soc. Cosmet. Sci. Korea, 34(1), 9 (2008). 
  19. A. S. Kabalnov and E. D. Shchukin, Ostwald ripening theory: applications to fluorocarbon emulsion stability, Adv. Colloid Interface Sci., 38, 68 (1992). 
  20. J. Lee, G. Y. Chi, and J. Lim, Effect of fatty acid on the membrane fluidity of liposomes, Appl. Chem. Eng., 28(2), 177 (2017). 
  21. E. Yilmaz and H. H. Borchert, Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides, Eur. J. Pharm. Biopharm., 60(1), 91 (2005).  https://doi.org/10.1016/j.ejpb.2004.11.009
  22. R. J. Wilson, Y. Li, G. Yang, and C. X. Zhao, Nanoemulsions for drug delivery, Particuology, 64, 85 (2022).  https://doi.org/10.1016/j.partic.2021.05.009
  23. F. Sharifi, M. Jahangiri, I. Nazir, M. H. Asim, P. Ebrahimnejad, A. Hupfauf, R. Gust, and A. Bernkop-Schnurch, Zeta potential changing nanoemulsions based on a simple zwitterion, J. Colloid Interface Sci., 585, 126 (2021).  https://doi.org/10.1016/j.jcis.2020.11.054
  24. E. J. An, C. K. Kang, J. W. Kim, and B. S. Jin, Lipid-based vesicles as transdermal delivery system, KIC News, 13(4), 24 (2010). 
  25. T. F. Tadros, Emulsion formation and stability, Wiley-VCH Verlag GmbH & Co. KGaA, Germany (2013).