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Abstract. In this paper, we consider matrix optimization problems. We investigate aug-

mented Lagrangian methods of multipliers and alternating direction methods of multipliers

for the problems. Following the proofs of Eckstein [3], and Eckstein and Yao [5], we prove

convergence theorems for augmented Lagrangian methods of multipliers and alternating di-

rection methods of multipliers for the problems.

1. Introduction and preliminaries

The augmented Lagrangian method of multipliers is for a convex optimiza-
tion problem with affine constraints. The alternating direction method of mul-
tipliers is for a splitting convex optimization problem with affine constraints.
The alternating direction method of multipliers is well suited to large-scale
problems arising in statistics, machine learning, and related areas [2]. The
two methods have been studied by many authors. In particular, the alternat-
ing direction methods by using proximal point algorithms was studied in [4].
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The alternating direction method by using fixed point theorem was studied in
[3, 5].

Matrix optimization problems have been studied [1, 6, 9]. The well-known
one of the problems is semdefinite optimization problem. The semidefinite
optimization problems have been intensively studied since many optimization
problem can be changed into the problems which are very computationable
[9]. As far as we know, there have been few papers for augmented Lagrangian
methods of multipliers and alternating direction methods of multipliers for
matrix optimization problems. So, we intend to investigate the two methods
for matrix optimization problems.

In this paper, we formulate algorithms for augmented Lagrangian methods
of multipliers and alternating direction methods of multipliers for matrix opti-
mization problems, and following the proofs of Eckstein [3], and Eckstein and
Yao [5], we prove convergence theorems for the two methods.

We denote the set of n × n symmetric matrices by Sn. The trace of X ∈
Sn, that is, the sum of the diagonal elements of X, is denoted by tr(X).
The inner product between two matrices A ∈ Sn and B ∈ Sn is defined as
〈A,B〉 = tr(AB) and the Frobenius norm of a matrix A ∈ Sn is defined as

‖A‖ := (tr(A2))
1
2 . Then Sn is a finite dimensional Hilbert space with the

inner product.

Definition 1.1. Given any convex function f : Sn → R∪{+∞}, a symmetric
matrix Z ∈ Sn is said to be a subgradient of f at X ∈ Sn if

f(X ′) ≥ f(X) + 〈Z,X ′ −X〉 for all X ′ ∈ Sn.

The notation ∂f(X) denotes the set of all subgradient f at X ∈ Sn.

The following theorem is a variant of Mann [8] iteration for fixed point of
the nonexpansive operator:

Theorem 1.2. ([3, 5, 7]) Let T : Rp → Rp be nonexpansive, that is,

‖Ty′ − Ty‖ 5 ‖y′ − y‖ for all y, y′ ∈ Rp.

Let the sequence {ρk} in the open interval (0, 2) be such that infk{ρk} > 0 and
supk{ρk} < 2. If the mapping T has a fixed point and the sequence {yk} is
generated by the following iterations:

yk+1 =
ρk
2
T (yk) + (1− ρk

2
)yk,

then the sequence {yk} converges to a fixed point of T .
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2. Augmented Lagrangian method of multipliers
for matrix optimization problem

Let h : Sn → R ∪ {+∞} be a proper, lower semicontinuous and convex
function and let A : Sn → Rp be a linear map defined by for any X ∈ Sn,
A(X) := (〈A1, X〉, . . . , 〈Ap, X〉), where Ai ∈ Sn, i = 1, . . . , p. Let b ∈ Rp be
a given vector. The adjoint operator A∗ : Rp → Sn of the linear map A is
defined as A∗(λ) :=

∑p
i=1 λiAi.

Consider the following convex matrix optimization problem:

min
X∈Sn

h(X) subject to A(X) = b. (2.1)

We assume that the problem (2.1) has an optimal solution. The problem (2.1)
is a convex optimization problem with affine constraints, which is a general-
ized form of semidefinite optimization problem. The semidefinite optimization
problems are studied in [1, 6, 9].

Let g(λ) := minX∈Sn{h(X) + 〈λ,A(X)− b〉} and d(λ) := −g(λ). Then the
function d is lower semicontinuous and convex [3, 5].

The dual problem of (2.1) is written as

min
λ∈Rp

d(λ).

Lemma 2.1. [3, 5] Given a proper, lower semicontinuous and convex function
f : Rp → R ∪ {+∞} and a positive real number c, the mapping Ncf : Rp → Rp
defined by

Ncf (z) := x− cv,
where x, v ∈ Rp are such that v ∈ ∂f(x) and x + cv = z is well defined, and
nonexpansive. The fixed points of Ncf are the critical ones of f and so the
minimizers of f .

Following the proofs of Eckstein [3], and Eckstein and Yao [5], we can prove
the following convergence result for augmented Lagrangian methods of multi-
pliers for the problem (2.1). For the completeness, we give the proof for the
convergence result in the following theorem:

Theorem 2.2. Consider the problem (2.1) and a positive real number c. Sup-
pose for some sequence {ρk} in the open interval (0, 2) with the properties that
infk{ρk} > 0 and supk{ρk} < 2, the sequence {Xk} in Sn and the sequence
{λk} in Rp are generated by the following iterations:

Xk+1 ∈ arg min
X∈Sn

{h(X) + 〈λk,A(X)− b〉+
c

2
‖A(X)− b‖2}, (2.2)

λk+1 = λk + ρkc(A(Xk+1)− b).
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If the dual problem of (2.1) possesses an optimal solution, then the sequence
{λk} converges to one of the optimal solutions of the dual problem of (2.1),
and all limit points of the sequence {Xk} are optimal solutions to the problem
(2.1).

Proof. As in Lemma 2.1, we define Ncd(µ) := λ− cv, where λ, v ∈ Rp are such
that v ∈ ∂d(λ) and λ+ cv = µ. From (2.2), we have

0 ∈ ∂h(Xk+1) +A∗(λk) + cA∗(A(Xk+1)− b)

= ∂h(Xk+1) +A∗(λk + c(A(Xk+1)− b)).

Let λ̃ := λk + c(A(Xk+1)− b). Then

0 ∈ ∂h(Xk+1) +A∗(λ̃)(= ∂h(Xk+1) +

p∑
i=1

λ̃iAi).

So, Xk+1 is an optimal solution of the problem:

min
X∈Sn

{h(X) + 〈λ̃,A(X)− b〉}.

For any λ′ ∈ Rp,
g(λ′) = min

X∈Sn
{h(X) + 〈λ′,A(X)− b〉}

5 h(Xk+1) + 〈λ′,A(Xk+1)− b〉

= h(Xk+1) + 〈λ̃,A(Xk+1)− b〉+ 〈λ′ − λ̃,A(Xk+1)− b〉

= g(λ̃) + 〈λ′ − λ̃,A(Xk+1)− b〉.

So, for any λ′ ∈ Rp, d(λ′) = d(λ̃)+〈λ′−λ̃, b−A(Xk+1)〉. Hence b−A(Xk+1) ∈
∂d(λ̃), and so

Ncd(λ
k)(=Ncd(λ̃+ c(b−A(Xk+1))) = λ̃− c(b−A(Xk+1)))

= λk+c(A(Xk+1)− b)− c(b−A(Xk+1))

= λk + 2c(A(Xk+1)− b).
Thus

ρk
2
Ncd(λ

k) + (1− ρk
2

)λk =
ρk
2

(λk + 2c(A(Xk+1)− b) + (1− ρk
2

)λk

= λk + cρk(A(Xk+1)− b)

= λk+1.

So, by Theorem 1.2, the sequence {λk} converges to such a fixed point of
Ncd. Let λ̄ be a point in Rp such that the sequence {λk} converges to λ̄. By
Lemma 2.1, λ̄ is a critical point of the function d. Since the sequence {λk}
converges and the sequence {ρk} is bounded away from 0, it follows from (2.2)
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that A(Xk+1) − b → 0. Let X̃ be any feasible solution of the problem (2.1).
From (2.2),

h(Xk+1) + 〈λk,A(Xk+1)− b〉+
c

2
‖A(Xk+1)− b‖2

5 h(X̃) + 〈λk,A(X̃)− b〉+
c

2
‖A(X̃)− b‖2

= h(X̃).

Let X∗ be any limit point of the sequence {Xk}, and for simplicity we assume
that Xk → X∗. Since A(Xk) − b → 0, we have A(X∗) = b. Since h is lower
semicontinuous,

h(X∗) 5 lim inf
k→∞

h(Xk)

= lim inf
k→∞

{h(Xk) + 〈λk−1,A(Xk)− b〉+
c

2
‖A(Xk)− b‖2}

5 h(X̃).

Thus for any feasible solution X̃ of the problem (2.1), h(X∗) 5 h(X̃). Hence
X∗ is an optimal solution of the problem (2.1). �

Now based upon Theorem 2.2, we state the augmented Lagrangian method
of multipliers for the problem (2.1):

(Algorithm for the Augmented Lagrangian Method of Multipliers for the
problem (2.1)): Let c be a positive real number and {ρk} be a sequence with
the property that infk{ρk} > 0 and supk{ρk} < 2. Let λ0 ∈ Rp and X0 ∈ Sn,
for k = 0, 1, . . ., and choose

Xk+1 ∈ arg min
X∈Sn

{h(X) + 〈λk,A(X)− b〉+
c

2
‖A(X)− b‖2},

λk+1 = λk + ρkc(A(Xk+1)− b).

3. Alternating direction methods of multipliers
for matrix optimization problems

Let f : Sn → R ∪ {+∞} and g : Sm → R ∪ {+∞} be proper, lower semi-
continuous and convex functions, let A : Sn → Rp, and B : Sm → Rp be lin-
ear maps defined by for any X ∈ Sn, A(X) = (〈A1, X〉, . . . , 〈Ap, X〉), where
Ai ∈ Sn, i = 1, . . . , p and for any Y ∈ Sm, B(Y ) = (〈B1, Y 〉, . . . , 〈Bp, Y 〉),
where Bi ∈ Sm, i = 1, . . . , p. Let b ∈ Rp be a given vector.

Consider the following convex matrix optimization problem:

min
X∈Sn,Y ∈Sm

f(X) + g(Y ) subject to A(X) + B(Y ) = b. (3.1)



874 G. M. Lee and J. H. Lee

We assume that the problem (3.1) has an optimal solution.
The dual problem of the problem (3.1) is as follows:

max
λ∈Rp

g(λ),

where the function g : Rp → R defined by

g(λ) := min
X∈Sn,Y ∈Sm

{f(X) + g(Y ) + 〈λ,A(X) + B(Y )− b〉}

= min
X∈Sn

{f(X) + 〈λ,A(X)− b〉}+ min
Y ∈Sm

{g(Y ) + 〈λ,B(Y )〉}

= g1(λ) + g2(λ),

where we define

g1(λ) := min
X∈Sn

{f(X) + 〈λ,A(X)− b〉} and g2(λ) := min
Y ∈Sm

{g(Y ) + 〈λ,B(Y )〉}.

Defining d1(λ) := −g1(λ) and d2(λ) := −g2(λ), the dual problem of the prob-
lem (3.1) becomes :

min
λ∈Rm

{d1(λ) + d2(λ)}.

Fix any constant c > 0 and assume that the functions d1 and d2 are proper.
As in Section 2, Ncd1(λ) = µ−cv, where µ, v ∈ Rp are such that v ∈ ∂d1(µ) and
µ+cv = λ and Ncd2(λ) = µ−cv, where µ, v ∈ Rp are such that v ∈ ∂d2(µ) and
µ+cv = λ are both nonexpansive. It follows that their composition Ncd1 ◦Ncd2

is also nonexpansive.

Lemma 3.1. ([3, 5]) {λ̃ ∈ Rp | (Ncd1 ◦ Ncd2)(λ̃) = λ̃} = {λ + cv | v ∈
∂d2(λ), −v ∈ ∂d1(λ)}.

Modifying the algorithm for the augmented Lagrangian method of multipli-
ers (which was considered in Section 2) for the problem (2.1), we can obtain
the following algorithm for the alternating direction method of multipliers for
the problem (3.1).

(Algorithm for the alternating direction method of multipliers, briefly ADMM
for the problem (3.1)): Let c be a positive real number and {ρk} be a se-
quence with the property that infk{ρk} > 0 and supk{ρk} < 2. Let Z0 :=
λ0 + c(−B(Y 0)), where −B(Y 0) ∈ ∂d2(λ0) and choose

Xk+1 ∈ arg min
X∈Sn

{f(X) + 〈λk,A(X)− b〉+
c

2
‖A(X)− b+B(Y k)‖2},

Y k+1 ∈ arg min
Y ∈Sm

{g(Y ) + 〈λk,B(Y )〉

+
c

2
‖ρk(A(Xk+1)− b) + (1− ρk)(−B(Y k)) + B(Y )‖2},

λk+1 =λk + c{ρk(A(Xk+1)− b) + (1− ρk)(−B(Y k)) + B(Y k+1)}.
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We call the above (ADMM) algorithm.

Following the proofs Eckstein [3], and Eckstein and Yao [5], we can prove
the following convergence result for the alternating direction method of mul-
tipliers for the problem (3.1). For the completeness, we give the proof for the
convergence result which is described in the following theorem:

Theorem 3.2. Consider the problem (3.1), and let c be a positive real number.
Suppose that there exists an optimal primal-dual solution pair ((X∗, Y ∗), λ∗)
to the problem (3.1) with the following properties:

(1) X∗ minimizes f(X) + 〈λ∗,A(X)− b〉;
(2) Y ∗ minimizes g(Y ) + 〈λ∗,B(Y )〉;
(3) A(X∗) + B(Y ∗) = b.

Assume that all subgradients of the function d1 at each point λ ∈ Rp take
the form b−A(X̄), where X̄ attains the stated maximum over X and that all
subgradients of the function d2 take the form −B(Ȳ ), where Ȳ attains the stated
maximum over Y . Then if the sequence {Xk} in Sn, the sequence {Y k} in Sm

and the sequence {λk} in Rp are generated by the (ADMM) Algorithm where
infk{ρk} > 0 and supk{ρk} < 2, then λk → λ∞, Y k → Y∞, and b−A(Xk)→
b−A(X∞) = B(Y∞), and B(Y k)→ B(Y∞), where ((X∞, Y∞), λ∞) is some
triple satisfying the conditions (1)-(3). Moreover, (X∞, Y∞) is an optimal
solution of the problem (3.1) and λ∞ is an optimal solution of the dual problem
of the problem (3.1).

Proof. From the first iteration of the (ADMM) Algorithm,

0 ∈ ∂f(Xk+1) +A∗(λk) + cA∗(A(Xk+1)− b+ B(Y k))

= ∂f(Xk+1) +A∗(λk + c(A(Xk+1)− b+ B(Y k)).

Thus we have

max
X∈Sn

{−f(X)− 〈λk + c(A(Xk+1)− b+ B(Y k)),A(X)− b〉}

= −f(Xk+1)− 〈λk + c(A(Xk+1)− b+ B(Y k)),A(Xk+1)− b〉.

Let λ := λk + c(A(Xk+1)− b+ B(Y k)). For any λ′ ∈ Rp,

d1(λ
′) = max

X∈Sn
{−f(X)− 〈λ′,A(X)− b〉}

= −f(Xk+1)− 〈λ′ − λ,A(Xk+1)− b〉 − 〈λ,A(Xk+1)− b〉

= d1(λ) + 〈λ′ − λ, b−A(Xk+1)〉.
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Thus, b−A(Xk+1) ∈ ∂d1(λ) = ∂d1(λ
k + c(A(Xk+1)− b+ B(Y k))). From the

second and third iterations of the (ADMM) Algorithm,

0 ∈ ∂g(Y k+1) + B∗(λk) + cB∗[ρk(A(Xk+1)− b) + (1− ρk)(−B(Y k))

+B(Y k+1)]

= ∂g(Y k+1) + B∗[λk + c{ρk(A(Xk+1)− b) + (1− ρk)(−B(Y k))

+B(Y k+1)}]

= ∂g(Y k+1) + B∗λk+1.

Thus we have

max
Y ∈Sm

{−g(Y )− 〈λk+1,B(Y )〉} = −g(Y k+1)− 〈λk+1,B(Y k+1)〉.

For any λ′ ∈ Rp,

d2(λ
′) = max

Y ∈Sm
{−g(Y )− 〈λ′,B(Y )〉}

= −g(Y k+1)− 〈λ′,B(Y k+1)〉

= −g(Y k+1)− 〈λ′ − λk+1,B(Y k+1)〉 − 〈λk+1,B(Y k+1)〉

= d2(λ
k+1) + 〈λ′ − λk+1,−B(Y k+1)〉.

Thus, −B(Y k+1) ∈ ∂d2(λk+1). So, we have

Ncd1(λk + c(A(Xk+1)− b+ B(Y k)) + c(b−A(Xk+1)))

= λk + 2cA(Xk+1)− 2cb+ cB(Y k)

= λk + c(2(A(Xk+1)− b) + B(Y k)).

Moreover, Ncd2(λk+1 + c(−B(Y k+1)) = λk+1 + cB(Y k+1). So,

Ncd2(λk + c(−B(Y k))) = λk + cB(Y k).

Let yk := λk + c(−B(Y k)). Notice that −B(Y k) ∈ ∂d2(λk). Then

ρk
2
Ncd1(Ncd2(yk)) + (1− ρk

2
)yk

=
ρk
2
Ncd1(λk + cB(Y k)) + (1− ρk

2
)(λk − cB(Y k))

=
ρk
2

(λk + c(2(A(Xk+1)− b) + B(Y k))) + (1− ρk
2

)(λk − cB(Y k))

= λk + c(ρk(A(Xk+1)− b)) + (1− ρk)(−B(Y k))

= λk+1 + c(−B(Y k+1))

= yk+1.
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Let the triple ((X∗, Y ∗), λ∗) satisfy the conditions (1)-(3). Then from the
condition (1),

X∗ ∈ arg min
X∈Sn

{f(X) + 〈λ∗,A(X)− b〉}.

Thus we have,

d1(λ
∗) = max

X∈Sn
{−f(X)− 〈λ∗,A(X)− b〉}

= −f(X∗)− 〈λ∗,A(X∗)− b〉.

For any λ′ ∈ Rp,

d1(λ
′) = max

X∈Sn
{−f(X)− 〈λ′,A(X)− b〉}

= − f(X∗)− 〈λ′,A(X∗)− b〉
= − f(X∗)− 〈λ′ − λ∗,A(X∗)− b〉 − 〈λ∗,A(X∗)− b〉
= d1(λ

∗) + 〈λ′ − λ∗, b−A(X∗)〉.

So, b−A(X∗) ∈ ∂d1(λ∗). Moreover, from the condition (2),

d2(λ
∗) = −g(Y ∗)− 〈λ∗,B(Y ∗)〉.

So, for any λ′ ∈ Rp,

d2(λ
′) = −g(Y ∗)− 〈λ′,B(Y ∗)〉

= −g(Y ∗)− 〈λ′ − λ∗,B(Y ∗)〉 − 〈λ∗,B(Y ∗)〉
= d2(λ

∗) + 〈λ′ − λ∗,−B(Y ∗)〉.

Thus, −B(Y ∗) ∈ ∂d2(λ∗). Since A(X∗) + B(Y ∗) = b, letting v∗ := −B(Y ∗) =
A(X∗)− b, v∗ ∈ ∂d2(λ∗) and −v∗ ∈ ∂d1(λ∗), and so, by Lemma 3.1, λ∗ + cv∗

is a fixed point of Ncd1 ◦ Ncd2 . Thus, Theorem 1.2, yk(= λk + c(−B(Y k)))
converges to some fixed point y∞ of Ncd1 ◦Ncd2 . By Lemma 3.1, y∞ is of the
form:

y∞ = λ∞ + cv∞,

where −v∞ ∈ ∂d1(λ∞) and v∞ ∈ ∂d2(λ∞). Since 0 ∈ ∂(d1 + d2)(λ
∞), λ∞ is

an optimal solution of the dual problem of (3.1). By the assumption regarding
d1, there exists X∞ ∈ Sn such that d1(λ

∞) = −f(X∞) − 〈λ∞,A(X∞) − b〉
and −v∞ = −A(X∞) + b. So, X∞ minimizes f(X) + 〈λ∞,A(X)− b〉. By the
assumption regarding d2, there exists Y∞ ∈ Sm such that d2(λ

∞) = −g(Y∞)−
〈λ∞,B(Y∞)〉 and v∞ = −B(Y∞). So, Y∞ minimizes g(Y ) + 〈λ∞,B(Y )〉.
Moreover, A(X∞) + B(Y∞) = b.
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Consider the mapping Rcd2 = 1
2Ncd2 + 1

2I, where I is an identity mapping.
Since Ncd2 is nonexpansive, Rcd2 is continuous. We have

Rcd2(y∞) = Rcd2(λ∞ + cv∞)

=
1

2
Ncd2(λ∞ + cv∞) +

1

2
(λ∞ + cv∞)

=
1

2
(λ∞ − cv∞) +

1

2
(λ∞ + cv∞)

= λ∞,

and similarly, since yk = λk + c(−B(Y k)),

Rcd2(yk) = Rcd2(λk + c(−B(Y k)) = λk.

Since yk → y∞ as k →∞ and Rcd2 is continuous, λk → λ∞ as k →∞. Also,
since −B(Y k) = 1

c (y
k − λk), and yk → y∞ and λk → λ∞ as k →∞,

−B(Y k)→ 1

c
(y∞ − λ∞) = v∞ = −B(Y∞).

We may also rewrite the third iteration of the (ADMM) Algorithm as

λk+1 − λk = cρk(A(Xk+1) + B(Y k)− b) + c(−B(Y k) + B(Y k+1)).

Since {λk} is convergent, λk+1−λk converges to 0. Since {B(Y k)} is convergent
and {ρk} is bounded away from 0, A(Xk+1) + B(Y k+1) − b → 0, and hence
A(Xk+1)− b→ −B(Y∞) as k →∞.

Consequently, λ∞ is an optimal solution of the dual problem of (3.1), X∞

minimizes f(X) + 〈λ∞,A(X) − b〉, Y∞ minimizes g(Y ) + 〈λ∞,B(Y )〉, and
A(X∞)+B(Y∞) = b. Thus f(X∞)+g(Y∞) = minX∈Sn,Y ∈Sm{f(X)+g(Y )+
〈λ∞,A(X)+B(Y )−b〉}. So, f(X∞)+g(Y∞) = minX∈Sn,Y ∈Sm{f(X)+g(Y ) |
A(X) + B(Y ) = b}. Thus (X∞, Y∞) is an optimal solution of the problem
(3.1). �

Remark 3.3. The augmented Lagrangian method of multipliers in Theo-
rem 2.2 can be used for solving the matrix optimization problem (2.1). The
alternating direction method of multipliers in Theorem 3.2 can be used for
solving the splitting matrix optimization problem (3.1).
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