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Abstract. In this paper, we present a new mixed type iterative process for approximating

the common fixed points of single-valued nonexpansive mapping and multi-valued nonexpan-

sive mapping in a CAT(0) space. We demonstrate strong and weak convergence theorems

for the new iterative process in CAT(0) spaces, as well as numerical results to support our

theorem.

1. Introduction

A geodesic metric space is a metric space X such that every two points of
X are joined by a geodesic; see for more details in [2, 3, 8, 13].

One of the special spaces of geodesic metric spaces is a CAT(0) space (for
further details on the subject, the reader is referred to [3, 9, 15, 20]). The
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useful inequality of CAT(0) space is (CN) inequality [4], that is, if z, x, y are
points in a CAT(0) space and if y0 is the midpoint of the segment [x, y], then
the CAT(0) inequality implies

d2(z, y0) ≤ 1

2
d2(z, x) +

1

2
d2(z, y)− 1

4
d2(x, y). (CN)

Kirk [10] obtained this result in the nonlinear setting of CAT(0) spaces in
2003. Every nonexpansive map does not have to be contracted. In this case,
the study of fixed points on nonexpansive maps is more difficult but more
important than the study of contraction maps (see [1, 11, 14, 16, 17, 18, 19]).

Let E be a nonempty closed convex subset of a metric space (X , d) and let
S : E → E be a single-valued mapping. An element p ∈ E is called a fixed
point of S if p = Sp. The set of all fixed points of S is denoted by F (S), that
is, F (S) = {p ∈ E : p = Sp}.

A single-valued mapping S : E → E is said to be
• nonexpansive if

d(Sx,Sy) ≤ d(x, y), ∀x, y ∈ E .

• semi-compact if for any sequence {xn} in E with

lim
n→∞

d(xn,Sxn) = 0,

there exists a subsequence {xni} of {xn} such that {xni} converges
strongly to p ∈ E .

Let X := (X , d) be a metric space and let E be a nonempty closed convex
subset of X . Denote by KC(E) (BC(E), respectively) the set of all nonempty
compact convex subsets (nonempty bounded and closed subsets, respectively)
of X . Let H be the Pompeiu-Hausdorff distance on BC(E), that is, for A, B ∈
BC(E)

H(A,B) = max

{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}
,

where dist(x, E) = inf {d(x, y) : y ∈ E} is the distance from a point x to a
subset E .

A point p ∈ E is called a fixed point of a multi-valued mapping T : E →
BC(E) if p ∈ T p.

A multi-valued mapping T : E → BC(E) is said to be

• nonexpansive if

H(T x, T y) ≤ d(x, y), ∀x, y ∈ E .
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• hemi-compact if for any sequence {xn} in E with

lim
n→∞

dist(xn, T xn) = 0,

there exists a strongly convergent subsequence {xni} to p ∈ E .

2. Preliminaries

Let {xn} be a bounded sequence in a metric space X . For x ∈ X , we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},
and the asymptotic center AC({xn}) of {xn} is the set

AC({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
It is known that in a complete CAT(0) space, AC({xn}) consists of exactly
one point (see [6, Proposition 7]).

We now give the definition of ∆-convergence of a sequence .

Definition 2.1. ([10, 12]) A sequence {xn} in a metric space X is said to be
∆-convergent to x ∈ X if x is the unique asymptotic center of {un} for every
subsequence {un} of {xn}. In this case we write ∆ − limn xn = x and call x
the ∆-limit of {xn}.

Lemma 2.2. ([10]) Every bounded sequence in a complete CAT(0) space al-
ways has a ∆-convergent subsequence.

Lemma 2.3. ([5]) If E is a closed convex subset of a complete CAT(0) space
and if {xn} is a bounded sequence in E, then the asymptotic center of {xn} is
in E.

Lemma 2.4. ([7]) Let X be a CAT(0) space.

(i) For x, y, z ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

(ii) For x, y, z ∈ X and t ∈ [0, 1], we have

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y).

Lemma 2.5. ([7]) Let E be a nonempty closed convex subset of a complete
CAT(0) space X and S : E → E be a nonexpansive mapping. If {xn} is a
bounded sequence in E such that limn→∞ d(xn,Sxn) = 0 and ∆-limn→∞ xn = p
then p = Sp.
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Lemma 2.6. ([7]) Let {xn} be a sequence in a CAT(0) space X with AC({xn}) =
{x}. If {un} is a subsequence of {xn} with AC({un}) = {u} and {d(xn, u)}
converges, then x = u.

3. Main Results

Firstly, denote F = F (S) ∩F (T ) is the set of all common fixed points of
the mappings S and T .

Theorem 3.1. Let E be a nonempty closed convex subset of a complete CAT(0)
space X . Let S : E → E be a single-valued nonexpansive mapping and
T : E → BC(E) be a multi-valued nonexpansive mapping. Suppose that F
is nonempty and T p = {p} for all p ∈ F . The sequence {xn} is defined by

x1 ∈ E ,
gn = γnxn ⊕ (1− γn)wn, wn ∈ T xn,
hn = βngn ⊕ (1− βn)zn, zn ∈ T gn,
xn+1 = αnShn ⊕ (1− αn)Sgn, ∀n ∈ N,

(3.1)

where {αn}, {βn} and {γn} are real sequence in [0, 1] such that satisfying

(a) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(c) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

Then, we have the following:

(i) limn→∞ d(xn, p) exists for all p ∈ F ;
(ii) limn→∞ d(xn,Sxn) = 0;
(ii) limn→∞ dist(xn, T xn) = 0.

Proof. (i) Let p ∈ F , by T p = {p}, we get

d(gn, p) = d(γnxn ⊕ (1− γn)wn, p)

≤ γnd(xn, p) + (1− γn)d(wn, p)

≤ γnd(xn, p) + (1− γn)dist(p, T xn)

≤ γnd(xn, p) + (1− γn)H(T p, T xn)

≤ γnd(xn, p) + (1− γn)d(xn, p)

= d(xn, p).

(3.2)
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Also
d(hn, p) = d(βngn ⊕ (1− βn)zn, p)

≤ βnd(gn, p) + (1− βn)d(zn, p)

≤ βnd(gn, p) + (1− βn)dist(p, T gn)

≤ βnd(gn, p) + (1− βn)H(T p, T gn)

≤ βnd(gn, p) + (1− βn)d(gn, p)

= d(gn, p).

(3.3)

Using (3.1) and (3.2), we obtain that

d(xn+1, p) = d(αnShn ⊕ (1− αn)Sgn, p)
≤ αnd(Shn, p) + (1− αn)d(Sgn, p)
≤ αnd(Shn,Sp) + (1− αn)d(Sgn,Sp)
≤ αnd(hn, p) + (1− αn)d(gn, p)

≤ αnd(gn, p) + (1− αn)d(gn, p)

= d(gn, p)

≤ d(xn, p).

(3.4)

This implies that {d(xn, p)} is decreasing and bounded below, thus
limn→∞ d(xn, p) exists for all p ∈ F .

(ii) By (i), we put

lim
n→∞

d(xn, p) = λ, for some λ. (3.5)

From (3.4), we get

d(xn+1, p) ≤ d(gn, p) ≤ d(xn, p).

So,
lim
n→∞

d(xn+1, p) ≤ lim
n→∞

d(gn, p) ≤ lim
n→∞

d(xn, p).

This implies that
lim
n→∞

d(gn, p) = λ. (3.6)

Using condition (a) and (3.4), we get

d(xn+1, p) ≤ αnd(gn, p) + (1− αn)d(gn, p)

≤ αnd(xn, p) + (1− αn)d(gn, p)

= αnd(xn, p) + d(xn, p)− d(xn, p) + (1− αn)d(gn, p)

= d(xn, p)− (1− αn)d(xn, p) + (1− αn)d(gn, p).

Then

(1− αn)d(xn, p) ≤ d(xn, p)− d(xn+1, p) + (1− αn)d(gn, p)
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and change it as

d(xn, p) ≤
1

1− αn
[d(xn, p)− d(xn+1, p)] + d(gn, p).

This implies that

λ = lim inf
n→∞

d(xn, p) ≤ lim inf
n→∞

d(gn, p). (3.7)

From (3.2), we get

lim sup
n→∞

d(gn, p) ≤ lim sup
n→∞

d(xn, p) = λ. (3.8)

Hence, by (3.7) and (3.8), we get

lim
n→∞

d(gn, p) = λ. (3.9)

Again, by (3.4), we obtain that

d(xn+1, p) ≤ αnd(hn, p) + (1− αn)d(gn, p)

and also

d(hn, p) ≥
1

αn
[d(xn+1, p)− (1− αn)d(gn, p)] .

This implies that

lim inf
n→∞

d(hn, p) ≥ lim inf
n→∞

{
1

αn
[d(xn+1, p)− (1− αn)d(gn, p)]

}
= λ. (3.10)

From (3.2), we get

lim sup
n→∞

d(hn, p) ≤ lim sup
n→∞

d(xn, p) = λ. (3.11)

Hence, by (3.10) and (3.11), we get

lim
n→∞

d(hn, p) = λ. (3.12)

Using Lemma 2.4 (ii), T p = {p} and (3.1), we get

d2(gn, p) = d2(γnxn ⊕ (1− γn)wn, p)

≤ γnd2(xn, p) + (1− γn)d2(wn, p)− γn(1− γn)d2(xn, wn)

≤ γnd2(xn, p) + (1− γn)dist2(p, T xn)− γn(1− γn)d2(xn, wn)

≤ γnd2(xn, p) + (1− γn)H2(T p, T xn)− γn(1− γn)d2(xn, wn)

≤ γnd2(xn, p) + (1− γn)d2(xn, p)− γn(1− γn)d2(xn, wn)

= d2(xn, p)− γn(1− γn)d2(xn, wn).
(3.13)
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Also,

d2(hn, p) = d2(βngn ⊕ (1− βn)zn, p)

≤ βnd2(gn, p) + (1− βn)d2(zn, p)− βn(1− βn)d2(gn, zn)

≤ βnd2(gn, p) + (1− βn)dist2(p, T gn)− βn(1− βn)d2(gn, zn)

≤ βnd2(gn, p) + (1− βn)H2(T p, T gn)− βn(1− βn)d2(gn, zn)

≤ βnd2(gn, p) + (1− βn)d2(gn, p)− βn(1− βn)d2(gn, zn)

= d2(gn, p)− βn(1− βn)d2(gn, zn)

≤ d2(xn, p)− βn(1− βn)d2(gn, zn).
(3.14)

Using (3.13) and (3.14), we obtain that

d2(xn+1, p) = d2(αnShn ⊕ (1− αn)Sgn, p)
≤ αnd

2(Shn, p) + (1− αn)d2(Sgn, p)− αn(1− αn)d(Shn,Sgn)

≤ αnd
2(hn, p) + (1− αn)d2(gn, p)− αn(1− αn)d(Shn,Sgn)

≤ αnd
2(gn, p) + (1− αn)d2(gn, p)− αn(1− αn)d(Shn,Sgn)

= d2(gn, p)− αn(1− αn)d(Shn,Sgn)

≤ d2(xn, p)− αn(1− αn)d(Shn,Sgn).
(3.15)

Using condition (a)-(c), (3.5), (3.9) and (3.12), we get

0 ≤ γn(1− γn)d2(xn, wn)

≤ d2(xn, p)− d2(gn, p)

→ 0 as n→∞,

0 ≤ βn(1− βn)d2(gn, zn)

≤ d2(xn, p)− d2(hn, p)

→ 0 as n→∞

and
0 ≤ αn(1− αn)d(Shn,Sgn)

≤ d2(xn, p)− d2(xn+1, p)

→ 0 as n→∞.

Hence, we obtain that

lim
n→∞

d(xn, wn) = lim
n→∞

d(gn, zn) = lim
n→∞

d(Shn,Sgn) = 0. (3.16)
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Indeed, because gn = γnxn⊕(1−γn)wn and hn = βngn⊕(1−βn)zn, we obtain
that

d(gn, xn) = d(γnxn ⊕ (1− γn)wn, xn)

≤ γnd(xn, xn) + (1− γn)d(wn, xn)

→ 0 as n→∞.
(3.17)

Also,

d(hn, xn) = d(βngn ⊕ (1− βn)zn, xn)

≤ βnd(gn, xn) + (1− βn)d(zn, xn)

≤ βnd(gn, xn) + (1− βn) [d(zn, gn) + d(gn, xn)]

→ 0 as n→∞.

(3.18)

By the nonexpansiveness of S, (3.16), (3.17) and (3.18) shows that

d(xn,Sxn) ≤ d(xn, gn) + d(Sgn,Shn) + d(Shn,Sxn)

≤ d(xn, gn) + d(Shn,Sgn) + d(hn, xn)

→ 0 as n→∞.
(3.19)

Hence, we have
lim
n→∞

d(xn,Sxn) = 0.

(iii) Because of nonexpansiveness of T , also from (3.16) and (3.17), we get

dist(xn, T xn) ≤ d(xn, gn) + dist(gn, T gn) +H(T gn, T xn)

≤ d(xn, gn) + distd(gn, T gn) + d(gn, xn)

= 2d(xn, gn) + dist(gn, T gn)

= 2d(xn, gn) + d(gn, zn)

→ 0 as n→∞.
Hence, we have

lim
n→∞

dist(xn, T xn) = 0.

This completes the proof. �

Theorem 3.2. Let E be a nonempty closed convex subset of a complete CAT(0)
space X . Let S : E → E be a single-valued nonexpansive mapping and T : E →
KC(E) be a multi-valued nonexpansive mapping. Suppose that F is nonempty
and T p = {p} for all p ∈ F . For x1 ∈ E , the sequence {xn} generated by (3.1),
where {αn}, {βn} and {γn} are real sequence in [0, 1] such that satisfying

(a) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(c) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

Then the sequence {xn} is ∆-convergent to a point in F .
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Proof. Let ω∆(xn) :=
⋃
AC({un}), where the union is taken over all subse-

quences {un} of {xn}. Let q ∈ ω∆(xn). Then there exists a subsequence {un}
of {xn} such that AC({un}) = {q}. Using Lemma 2.2 and Lemma 2.3, there
exists a subsequence {vn} of {un} such that

∆− lim
n→∞

vn = v ∈ E . (3.20)

From Theorem 3.1 (ii), we have

lim
n→∞

d(vn,Svn) = 0.

Then, by the nonexpansiveness of S, it implies by Lemma 2.5 that v = Sv.
Thus, we get

v ∈ F (S). (3.21)

Since T is compact valued, for each n ∈ N, there exist rn ∈ T vn and ϑn ∈ T v
such that d(vn, rn) = dist(vn, T vn) and d(rn, ϑn) = dist(rn, T v). By Theorem
3.1 (iii), it follows that

lim
n→∞

d(vn, rn) = 0.

By the compactness of T v, so there exists a subsequence {ϑni} of {ϑn} such
that limi→∞ ϑni = ϑ ∈ T v. Then we have

lim sup
i→∞

d(vni , ϑ) ≤ lim sup
i→∞

(d(vni , rni) + d(rni , ϑni) + d(ϑni , ϑ))

≤ lim sup
i→∞

(d(vni , rni) + dist(rni , T v) + d(ϑni , ϑ))

≤ lim sup
i→∞

(d(vni , rni) +H(T vni , T v) + d(ϑni , ϑ))

≤ lim sup
i→∞

(d(vni , rni) + d(vni , v) + d(ϑni , ϑ))

= lim sup
i→∞

d(vni , v).

By (3.20) and the uniqueness of asymptotic centers, we obtain v = ϑ ∈ T v.
Thus, by (3.21), we have

v ∈ F (S) ∩F (T ) = F .

It follows by Theorem 3.1 and Lemma 2.5, we have ω∆(xn) ⊆ F .

Next, we show that {xn} is ∆-convergent to a point in F . Suppose that
{un} is a subsequence of {xn} with AC({un}) = {u∗} and AC({xn}) = {x}.
Since u∗ ∈ ω∆(xn) ⊆ F and {d(xn, u

∗)} converges, it implies from Lemma
2.6 that x = u∗, which shows that ω∆(xn) consists of exactly one point. This
implies that {xn} is ∆-convergent to a point in F . �
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Theorem 3.3. Let E be a nonempty closed convex subset of a complete CAT(0)
space X . Let S : E → E be a single-valued nonexpansive mapping and S : E →
BC(E) be a multi-valued nonexpansive mapping. Suppose that F is nonempty
and T p = {p} for all p ∈ F . For x1 ∈ E , the sequence {xn} generated by (3.1),
where {αn}, {βn} and {γn} are real sequence in [0, 1] such that satisfying

(a) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(c) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

If S is semi-compact or T is hemi-compact, then the sequence {xn} converges
strongly to a point in F .

Proof. Without loss of generality, we assume T is hemi-compact. Using The-
orem 3.1 (iii), limn→∞ dist(xn, T xn) = 0. Then, by hemi-compactness of T ,
there exists a subsequence {δn} of {xn} which converges strongly to p in E .

Using Theorem 3.1, we have limn→∞ d(δn,Sδn) = 0, limn→∞ dist(δn, T δn) =
0. It follows from nonexpansiveness of S that p = Sp. Then, we get

p ∈ F (S). (3.22)

By nonexpansiveness of T , we obtain that

dist(p, T p) ≤ d(p, δn) + dist(δn, T δn) +H(T δn, T p)
≤ 2d(p, δn) + dist(δn, T δn)

→∞ as n→∞.

This implies that dist(p, T p) = 0, that is, p ∈ T p. Hence, p ∈ F (T ). Thus,
using (3.22), we get

p ∈ F (S) ∩F (T ) = F .

Using double extract subsequence principle, we can conclude that the sequence
{xn} converges strongly to a point p in F . �

4. Numerical example

Let X = R2 be a Euclidean metric space and E = {x = (x(1), x(2)) ∈ R2 :

0 ≤ x(1), x(2) ≤ 1}. For each x = (x(1), x(2)) ∈ E , we define mappings S and T
on E as follows:

Sx =

(
3x(1) + 2

7
,
x(2) + 2

3

)
and T x = {x(1)} ×

[
x(2) + 3

4
, 1

]
,

which S and T are nonexpansive.

Let xn = (x
(1)
n , x

(2)
n ), gn = (g

(1)
n , g

(2)
n ) and hn = (h

(1)
n , h

(2)
n ) are points in R2.

We took wn =

(
x

(1)
n ,

x
(2)
1 + 3

4

)
∈ T xn, αn =

4n√
64n2 + 5

, βn =
3n− 1√

36n2 + 10
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and γn =
5n− 1√

49n2 + 15
in iterative scheme (3.1) with the initial point x1 =

(0.1, 0.1), we have numerical results in Table 1.

Table 1. Numerical results of iterative scheme (3.1)

n xn = (x
(1)
n , x

(2)
n ) ‖xn − xn−1‖2

1 (0.1, 0.1) –
2 (0.328571, 0.846359) 0.780574
3 (0.426531, 0.968569) 0.156625
4 (0.468513, 0.993228) 0.048689
5 (0.486506, 0.998507) 0.018751
6 (0.494217, 0.999666) 0.007798
7 (0.497521, 0.999925) 0.003315
8 (0.498938, 0.999983) 0.001418
9 (0.499545, 0.999996) 0.000607
10 (0.499805, 0.999999) 0.000260
11 (0.499916, 1.000000) 0.000111
12 (0.499964, 1.000000) 0.000048
13 (0.499985, 1.000000) 0.000020
14 (0.499993, 1.000000) 0.000009
15 (0.499997, 1.000000) 0.000004
16 (0.499999, 1.000000) 0.000002
17 (0.499999, 1.000000) 0.000001
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