RUDNICK AND SOUNDARARAJAN'S THEOREM FOR FUNCTION FIELDS IN EVEN CHARACTERISTIC

Hwanyup Jung

Abstract

In this paper we prove an even characteristic analogue of the result of Andrade on lower bounds for moment of quadratic Dirichlet L-functions in odd characteristic. We establish lower bounds for the moments of Dirichlet L-functions of characters defined by Hasse symbols in even characteristic.

1. Introduction

It is a fundamental problem in analytic number theory to estimate moments of central values of L-functions in families. In [3, 4], Rudnick and Soundararajan obtained a result on lower bounds for moments of central values of L-functions over the family of quadratic Dirichlet characters. More precisely, they showed that for every even natural number k, one has

$$
\sum_{|d| \leq X}^{b} L\left(\frac{1}{2}, \chi_{d}\right)^{k} \gg_{k} X(\log X)^{k(k+1) / 2}
$$

where b indicates that the sum is taken over fundamental discriminants d, and χ_{d} is the Dirichlet character associated to the quadratic extension K / \mathbb{Q} of discriminant d. In [1], Andrade established a function field analogue of the result of Rudnick and Soundararajan in odd characteristic. Let $\mathbb{F}_{q}[T]$ be the polynomial ring over a finite field \mathbb{F}_{q}, where q is odd, and \mathcal{H}_{n} denote the set of monic square-free polynomials in $\mathbb{F}_{q}[T]$

[^0]of degree n. Andrade proved that for every even natural number k and $n=2 g+1$ or $n=2 g+2$, one has
$$
\frac{1}{\left|\mathcal{H}_{n}\right|} \sum_{D \in \mathcal{H}_{n}} L\left(\frac{1}{2}, \chi_{D}\right)^{k} \gg_{k}\left(\log _{q}|D|\right)^{k(k+1) / 2}
$$
where $|D|=q^{\operatorname{deg}(D)}$ and $L\left(s, \chi_{D}\right)$ is the Dirichlet L-function attached to a quadratic character χ_{D}. The aim of this paper is to give an even characteristic analogue of the result of Andrade.

Let us fix some basic notations. Let $\mathrm{k}=\mathbb{F}_{q}(T)$ be the rational function field over a finite field \mathbb{F}_{q} and $\mathbb{A}=\mathbb{F}_{q}[T]$. From now on q is assumed to be even and $q>2$ for simplicity. We denote by \mathbb{A}^{+}the set of monic polynomials in \mathbb{A} and by \mathbb{P} the set of monic irreducible polynomials in \mathbb{A}. Let $\mathbb{A}_{n}=\{f \in \mathbb{A}: \operatorname{deg}(f)=n\}$, and $\mathbb{A}_{n}^{+}=\mathbb{A}^{+} \cap \mathbb{A}_{n}$ for any positive integer n. The zeta function $\zeta_{\mathbb{A}}(s)$ of \mathbb{A} is defined to be the following infinite series:

$$
\zeta_{\mathbb{A}}(s)=\sum_{f \in \mathbb{A}^{+}} \frac{1}{|f|^{s}}=\prod_{P \in \mathbb{P}}\left(1-\frac{1}{|P|^{s}}\right)^{-1}, \quad \operatorname{Re}(s)>1
$$

It is well known that $\zeta_{\mathbb{A}}(s)=\frac{1}{1-q^{1-s}}$. For $f \in \mathbb{A}^{+}, \operatorname{let} \Phi(f)=\left|(\mathbb{A} / f \mathbb{A})^{\times}\right|$.

1.1. Quadratic function field in even characteristic

In this subsection, we recall some basic facts on quadratic function field in even characteristic. For more details, we refer to $[2, \S 2.2, \S 2.3]$. Any separable quadratic extension of k is of the form $K_{u}=\mathrm{k}\left(x_{u}\right)$, where x_{u} is a zero of $X^{2}+X+u=0$ for some $u \in \mathrm{k}$. Fix an element $\xi \in \mathbb{F}_{q} \backslash \wp\left(\mathbb{F}_{q}\right)$, where $\wp: \mathrm{k} \rightarrow \mathrm{k}$ is the additive homomorphism defined by $\wp(x)=x^{2}+x$. We say that $u \in \mathrm{k}$ is normalized if it is of the form

$$
u=\sum_{i=1}^{m} \sum_{j=1}^{e_{i}} \frac{A_{i j}}{P_{i}^{2 j-1}}+\sum_{\ell=1}^{n} \alpha_{\ell} T^{2 \ell-1}+\alpha,
$$

where $P_{i} \in \mathbb{P}$ are distinct, $A_{i j} \in \mathbb{A}$ with $\operatorname{deg}\left(A_{i j}\right)<\operatorname{deg}\left(P_{i}\right), A_{i e_{i}} \neq 0$, $\alpha \in\{0, \xi\}, \alpha_{\ell} \in \mathbb{F}_{q}$ and $\alpha_{n} \neq 0$ for $n>0$. Let $u \in \mathrm{k}$ be normalized one. The infinite prime $(1 / T)$ of k splits, is inert or ramified in K_{u} according as $n=0$ and $\alpha=0, n=0$ and $\alpha=\xi$, or $n>0$. Then the field K_{u} is called real, inert imaginary, or ramified imaginary, respectively. The discriminant D_{u} of K_{u} is given by

$$
D_{u}= \begin{cases}\prod_{i=1}^{m} P_{i}^{2 e_{i}} & \text { if } n=0 \\ \prod_{i=1}^{m} P_{i}^{2 e_{i}} \cdot(1 / T)^{2 n} & \text { if } n>0\end{cases}
$$

and the genus g_{u} of K_{u} is given by

$$
g_{u}=\frac{1}{2} \operatorname{deg}\left(D_{u}\right)-1 .
$$

For $M \in \mathbb{A}^{+}$, write $r(M)=\prod_{P \mid M} P$ and $t(M)=M \cdot r(M)$. For $P \in \mathbb{P}$, let ν_{P} be the normalized valuation at P. Let \mathcal{B} be the set of non-constant monic polynomials M such that $\nu_{P}(M)$ is zero or odd for any $P \in \mathbb{P}$, and $\mathcal{B}_{n}=\{M \in \mathcal{B}: \operatorname{deg}(t(M))=2 n\}$. The map $\mathcal{B}_{n} \rightarrow \mathbb{A}_{n}^{+}$defined by $M \mapsto \tilde{M}=\sqrt{M}$ is a bijection with the inverse $N \mapsto N^{*}=\frac{N^{2}}{r(N)}$. Hence, $\left|\mathcal{B}_{n}\right|=\left|\mathbb{A}_{n}^{+}\right|=q^{n}$. Let \mathcal{F} be the set of rational functions $\frac{D}{M} \in \mathrm{k}$ with $D \in \mathbb{A}, M \in \mathcal{B}, \operatorname{gcd}(D, M)=1$ and $\operatorname{deg}(D)<\operatorname{deg}(M)$ which can be written as

$$
\frac{D}{M}=\sum_{P \mid M} \sum_{i=1}^{\ell_{P}} \frac{A_{P, i}}{P^{2 i-1}},
$$

where $\operatorname{deg}\left(A_{P, i}\right)<\operatorname{deg}(P)$ for any $P \mid M$ and $1 \leq i \leq \ell_{P}=\frac{1}{2}\left(\nu_{P}(M)+1\right)$. Under the correspondence $u \mapsto K_{u}, \mathcal{F}$ corresponds to the set of all real separable quadratic extensions K_{u} of k. For $M \in \mathcal{B}$, let \mathcal{F}_{M} be the set of rational functions $u \in \mathcal{F}$ whose denominator is M. Then \mathcal{F} is the disjoint union of \mathcal{F}_{M} with $M \in \mathcal{B}$. For $u \in \mathcal{F}_{M}$, the discriminant D_{u} and the genus g_{u} of K_{u} are $D_{u}=t(M)$ and $g_{u}=\frac{1}{2} \operatorname{deg}(t(M))-1$. For $n \geq 1$, let \mathcal{F}_{n} be the union of \mathcal{F}_{M} with $M \in \mathcal{B}_{n}$. Then \mathcal{F}_{n} corresponds to the set of all real separable quadratic extensions K_{u} of k with genus $n-1$. For $M \in \mathcal{B}_{n}$, there are $\Phi(\tilde{M}) D$'s such that $\frac{D}{M} \in \mathcal{F}_{n}$, so that $\left|\mathcal{F}_{M}\right|=\Phi(\tilde{M})$ and

$$
\left|\mathcal{F}_{n}\right|=\sum_{M \in \mathcal{B}_{n}} \Phi(\tilde{M})=\sum_{\tilde{M} \in \mathbb{A}_{n}^{+}} \Phi(\tilde{M})=\zeta_{\mathbb{A}}(2)^{-1} q^{2 n} .
$$

For a positive integer s, let \mathcal{G}_{s} be the set of polynomials $F(T) \in \mathbb{A}$ of the form

$$
F(T)=\alpha+\sum_{i=1}^{s} \alpha_{i} T^{2 i-1}
$$

where $\alpha \in\{0, \xi\}, \alpha_{i} \in \mathbb{F}_{q}$ and $\alpha_{s} \neq 0$. For any two subsets U, V of k , write $U+V=\{u+v: u \in U, v \in V\}$. Let $\mathcal{I}=(\mathcal{F} \cup\{0\})+\mathcal{G}$, where $\mathcal{G}=\bigcup_{s \geq 1} \mathcal{G}_{s}$. Then, under the correspondence $u \mapsto K_{u}, \mathcal{I}$ corresponds to the set of all ramified imaginary separable quadratic extensions K_{u} of k . For $w \in \mathcal{F}_{M}+\mathcal{G}_{s}$, the discriminant D_{w} and the genus g_{w} of K_{w} are $D_{w}=t(M) \cdot(1 / T)^{2 s}$ and $g_{w}=\frac{1}{2} \operatorname{deg}(t(M))+s-1$. Let $\mathcal{F}_{0}=\{0\}$. For any $r \geq 0$ and $s \geq 1$, let $\mathcal{I}_{(r, s)}=\mathcal{F}_{r}+\mathcal{G}_{s}$. If $w \in \mathcal{I}_{(r, s)}$, the genus g_{w} of K_{w} is $r+s-1$. For $n \geq 1$, let \mathcal{I}_{n} be the union of all $\mathcal{I}_{(r, s)}$, where (r, s) runs over
all pairs of non-negative integers such that $s>0$ and $r+s=n$. Then \mathcal{I}_{n} corresponds to the set of all ramified imaginary separable quadratic extensions K_{u} of k with genus $n-1$. Since $\left|\mathcal{G}_{s}\right|=2 \zeta_{\mathbb{A}}(2)^{-1} q^{s}$ for $s \geq 1$, we have

$$
\left|\mathcal{I}_{n}\right|=\sum_{s=1}^{n}\left|\mathcal{F}_{n-s}\right|\left|\mathcal{G}_{s}\right|=2 \zeta_{\mathbb{A}}(2)^{-1} q^{2 n-1}
$$

1.2. Hasse symbol and L-functions

For any $u \in k$ whose denominator is not divisible by $P \in \mathbb{P}$, the Hasse symbol $[u, P)$ with values in \mathbb{F}_{2} is defined by

$$
[u, P)= \begin{cases}0 & \text { if } X^{2}+X \equiv u \bmod P \text { is solvable in } \mathbb{A} \\ 1 & \text { otherwise }\end{cases}
$$

For $N \in \mathbb{A}$ prime to the denominator of u, if $N=\operatorname{sgn}(N) \prod_{i=1}^{s} P_{i}^{e_{i}}$, where $\operatorname{sgn}(N)$ is the leading coefficient of N and $P_{i} \in \mathbb{P}$ are distinct and $e_{i} \geq 1$, the symbol $[u, N)$ is defined to be $\sum_{i=1}^{s} e_{i}\left[u, P_{i}\right)$.

For $u \in k$ and $0 \neq N \in \mathbb{A}$, the quadratic symbol $\left\{\frac{u}{N}\right\}$ is defined as follows:

$$
\left\{\frac{u}{N}\right\}= \begin{cases}(-1)^{[u, N)} & \text { if } N \text { is prime to the denominator of } u \\ 0 & \text { otherwise }\end{cases}
$$

This symbol is clearly additive in its first variable, and multiplicative in the second variable.

For the field K_{u}, we associate a character χ_{u} on \mathbb{A}^{+}which is defined by $\chi_{u}(f)=\left\{\frac{u}{f}\right\}$, and let $L\left(s, \chi_{u}\right)$ be the L-function associated to the character χ_{u} : for $s \in \mathbb{C}$ with $\operatorname{Re}(s) \geq 1$,

$$
L\left(s, \chi_{u}\right)=\sum_{f \in \mathbb{A}^{+}} \frac{\chi_{u}(f)}{|f|^{s}}=\prod_{P \in \mathbb{P}^{P}}\left(1-\frac{\chi_{u}(P)}{|P|^{s}}\right)^{-1}
$$

It is known that $L\left(s, \chi_{u}\right)$ is a polynomial in q^{-s} of degree $2 g_{u}+\frac{1}{2}(1+$ $(-1)^{\varepsilon(u)}$, where $\varepsilon(u)=1$ if K_{u} is ramified imaginary and $\varepsilon(u)=0$ otherwise.

1.3. Results

The main result of this paper is the following theorem.

Theorem 1.1. For any even natural number k we have

$$
\frac{1}{\left|\mathcal{I}_{g+1}\right|} \sum_{u \in \mathcal{I}_{g+1}} L\left(\frac{1}{2}, \chi_{u}\right)^{k} \gg_{k} g^{k(k+1) / 2}
$$

Remark 1.2. Comparing to the odd characteristic case, \mathcal{I}_{g+1} corresponds to $\mathcal{H}_{2 g+1}$ (more precisely, $\mathcal{H}_{2 g+1} \cup \gamma \mathcal{H}_{2 g+1}$, where γ is a generator of \mathbb{F}_{q}^{\times}), and \mathcal{F}_{g+1} corresponds to $\mathcal{H}_{2 g+2}$. Even though, for simplicity, we restrict ourselves to \mathcal{I}_{g+1} in this paper, we also can prove that for any even natural number k,

$$
\frac{1}{\left|\mathcal{F}_{g+1}\right|} \sum_{u \in \mathcal{F}_{g+1}} L\left(\frac{1}{2}, \chi_{u}\right)^{k} \gg_{k} g^{k(k+1) / 2} .
$$

2. Preliminaries

In this section we present some auxiliary lemmas that will be used in the proof of the main theorem.

Let $\mathbb{A}_{\leq x}^{+}=\left\{f \in \mathbb{A}^{+}: \operatorname{deg}(f) \leq x\right\}$ for any $x>0$. The following lemma is an even characteristic analogue of [1, Lemma 3.1], which is an "Approximate" functional equations of $L\left(s, \chi_{u}\right)$.

Lemma 2.1. Let $u \in \mathcal{I}_{g+1}$. For any $s \in \mathbb{C}$ with $\operatorname{Re}(s) \geq \frac{1}{2}$, we have

$$
L\left(s, \chi_{u}\right)=\sum_{f \in \mathbb{A}_{\leq g}^{+}} \frac{\chi_{u}(f)}{|f|^{s}}+q^{(1-2 s) g} \sum_{f \in \mathbb{A}_{\leq g-1}^{+}} \frac{\chi_{u}(f)}{|f|^{1-s}} .
$$

Proof. It follows immediately from Lemma 3.1 in [2] since $g_{u}=g$ for $u \in \mathcal{I}_{g+1}$.

The following lemma quoted from [2, Lemma 3.3] that is needed in proof of Proposition 2.3.

Lemma 2.2. Let $L \in \mathbb{A}^{+}$. Given any $\epsilon>0$, we have

$$
\sum_{\substack{f \in \mathbb{A}_{n}^{+} \\(f, L)=1}} \Phi(f)=\frac{q^{2 n}}{\zeta_{\mathbb{A}}(2)} \prod_{P \mid L}\left(1+\frac{1}{|P|}\right)^{-1}+O\left(q^{n(1+\epsilon)}\right)
$$

We give the following orthogonality relations for sums over \mathcal{I}_{n}.
Proposition 2.3. Let $f \in \mathbb{A}^{+}$.

1. If f is not a square in \mathbb{A}, then

$$
\sum_{u \in \mathcal{I}_{n}} \chi_{u}(f) \ll 2^{\frac{\operatorname{deg}(f)}{2}} n \sqrt{\left|\mathcal{I}_{n}\right|} .
$$

2. If f is a square in \mathbb{A}, then

$$
\sum_{u \in \mathcal{I}_{n}} \chi_{u}(f)=\left|\mathcal{I}_{n}\right| \prod_{P \mid f}\left(1+\frac{1}{|P|}\right)^{-1}+O\left(\left|\mathcal{I}_{n}\right|^{\frac{1}{2}(1+\epsilon)}\right)
$$

for any $\epsilon>0$.
Proof. The case of f being not a square in \mathbb{A} follows immediately from Proposition 3.20 in [2] since $\left|\mathcal{I}_{n}\right|=2 \zeta_{\mathbb{A}}(2)^{-1} q^{2 n-1}$. Consider the case that f is a square in \mathbb{A}. Since \mathcal{I}_{n} is the disjoint union of the $\mathcal{I}_{(r, n-r)}$'s for $0 \leq r \leq n-1$, we can write

$$
\begin{equation*}
\sum_{u \in \mathcal{I}_{n}} \chi_{u}(f)=\sum_{r=0}^{n-1} \sum_{u \in \mathcal{I}_{(r, n-r)}} \chi_{u}(f) . \tag{2.1}
\end{equation*}
$$

Note that $\mathcal{I}_{(0, n)}=\mathcal{G}_{n}$ and $\left|\mathcal{G}_{n}\right|=2 \zeta_{\mathbb{A}}(2)^{-1} q^{n}$. Then we have

$$
\begin{equation*}
\sum_{u \in \mathcal{I}_{(0, n)}} \chi_{u}(f)=\left|\mathcal{G}_{n}\right| \ll\left|\mathcal{I}_{n}\right|^{\frac{1}{2}(1+\epsilon)} \tag{2.2}
\end{equation*}
$$

For $M \in \mathcal{B}_{r}$ with $1 \leq r \leq n-1$, let $\mathcal{I}_{M}=\mathcal{F}_{M}+\mathcal{G}_{n-r}$. Then $\mathcal{I}_{(r, n-r)}$ is the disjoint union of the \mathcal{I}_{M} 's, where M runs over \mathcal{B}_{r}. For $u \in \mathcal{I}_{M}$ with $M \in \mathcal{B}_{r}$, we have $\chi_{u}(f)=1$ if $(M, f)=1$ and $\chi_{u}(f)=0$ otherwise. Thus, we have

$$
\begin{equation*}
\sum_{u \in \mathcal{I}_{(r, n-r)}} \chi_{u}(f)=\sum_{\substack{M \in \mathcal{B}_{r} \\(M, f)=1}} \sum_{u \in \mathcal{I}_{M}} 1=2 \zeta_{\mathbb{A}}(2)^{-1} q^{n-r} \sum_{\substack{M \in \mathcal{B}_{r} \\(M, f)=1}} \Phi(\tilde{M}) \tag{2.3}
\end{equation*}
$$

since $\left|\mathcal{I}_{M}\right|=\left|\mathcal{F}_{M}\right|\left|\mathcal{G}_{n-r}\right|=2 \zeta_{\mathbb{A}}(2)^{-1} q^{n-r} \Phi(\tilde{M})$ for $M \in \mathcal{B}_{r}$. The map $\mathcal{B}_{n} \rightarrow \mathbb{A}_{n}^{+}$defined by $M \mapsto \tilde{M}$ is a bijection and $(M, f)=1$ if and only if $(\tilde{M}, f)=1$. Thus we have

$$
\sum_{\substack{M \in \mathcal{B}_{r} \\(M, f)=1}} \Phi(\tilde{M})=\sum_{\substack{\tilde{M} \in \mathbb{A}_{r}^{+} \\(\tilde{M}, f)=1}} \Phi(\tilde{M})
$$

$$
\begin{equation*}
=\frac{q^{2 r}}{\zeta_{\mathbb{A}}(2)} \prod_{P \mid f}\left(1+\frac{1}{|P|}\right)^{-1}+O\left(q^{r(1+\epsilon)}\right) \tag{2.4}
\end{equation*}
$$

where the second equality follows from Lemma 2.2. We insert (2.4) into (2.3) to get

$$
\begin{equation*}
\sum_{u \in \mathcal{I}_{(r, n-r)}} \chi_{u}(f)=2 \zeta_{\mathbb{A}}(2)^{-2} q^{n+r} \prod_{P \mid f}\left(1+\frac{1}{|P|}\right)^{-1}+O\left(q^{n+r \epsilon}\right) \tag{2.5}
\end{equation*}
$$

Since $\left|\mathcal{I}_{n}\right|=2 \zeta_{\mathbb{A}}(2)^{-1} q^{2 n-1}$, by inserting (2.2) and (2.5) into (2.1) and arranging the terms, we complete the proof.

For $f \in \mathbb{A}^{+}$, let $d_{k}(f)$ represent the number of ways to write f as a product of k factors. We have the following asymptotic formula whose proof can be found in $[1, \S 4.1]$.

Lemma 2.4. We have

$$
\sum_{f \in \mathbb{A}_{\leq z}^{+}} \frac{d_{k}\left(f^{2}\right)}{|f|} \prod_{P \mid f}\left(1+\frac{1}{|P|}\right)^{-1} \sim C(k) z^{k(k+1) / 2}
$$

for some positive constant $C(k)$ explicitly given in $[1,(4.26)]$.

3. Proof of Theorem 1.1

Let k be a given even natural number, and set $x=\frac{2(2 g)}{15 k}$. For $u \in$ \mathcal{I}_{g+1}, define

$$
A(u)=\sum_{f \in \mathbb{A}_{\leq x}^{+}} \frac{\chi_{u}(f)}{\sqrt{|f|}}
$$

We use Triangle inequality and Holder's inequality to obtain that

$$
\begin{aligned}
\left|\sum_{u \in \mathcal{I}_{g+1}} L\left(\frac{1}{2}, \chi_{u}\right) A(u)^{k-1}\right| & \leq \sum_{u \in \mathcal{I}_{g+1}}\left|L\left(\frac{1}{2}, \chi_{u}\right) \| A(u)\right|^{k-1} \\
& \leq\left(\sum_{u \in \mathcal{I}_{g+1}} L\left(\frac{1}{2}, \chi_{u}\right)^{k}\right)^{\frac{1}{k}}\left(\sum_{u \in \mathcal{I}_{g+1}} A(u)^{k}\right)^{\frac{k-1}{k}}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\sum_{u \in \mathcal{I}_{g+1}} L\left(\frac{1}{2}, \chi_{u}\right)^{k} \geq \frac{\mathcal{S}_{1}^{k}}{\mathcal{S}_{2}^{k-1}} \tag{3.1}
\end{equation*}
$$

where

$$
\mathcal{S}_{1}=\sum_{u \in \mathcal{I}_{g+1}} L\left(\frac{1}{2}, \chi_{u}\right) A(u)^{k-1} \text { and } \mathcal{S}_{2}=\sum_{u \in \mathcal{I}_{g+1}} A(u)^{k}
$$

3.1. Estimating \mathcal{S}_{2}

In this subsection we follow the arguments in $[1, \S 4.1]$ to estimate \mathcal{S}_{2}. We have

$$
\begin{equation*}
\mathcal{S}_{2}=\sum_{f_{1}, \ldots, f_{k} \in \mathbb{A}_{\leq x}^{+}} \frac{1}{\sqrt{\left|f_{1}\right| \cdots\left|f_{k}\right|}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}\left(f_{1} \cdots f_{k}\right) \tag{3.2}
\end{equation*}
$$

We use Proposition 2.3 to obtain that

$$
\begin{aligned}
& \mathcal{S}_{2}=\left|\mathcal{I}_{g+1}\right| \\
& \sum_{\substack{f_{1}, \ldots, f_{k} \in \mathbb{A}_{\leq x}^{+} \\
f_{1} \cdots f_{k}=\square}} \frac{1}{\sqrt{\left|f_{1}\right| \cdots\left|f_{k}\right|}} \prod_{P \mid f_{1} \cdots f_{k}}\left(1+\frac{1}{|P|}\right)^{-1} \\
&+\sum_{\substack{f_{1}, \ldots, f_{k} \in \mathbb{A}_{\leq x}^{+} \\
f_{1} \cdots f_{k}=\square}} \frac{1}{\sqrt{\left|f_{1}\right| \cdots\left|f_{k}\right|}} O\left(\left|\mathcal{I}_{g+1}\right|^{\frac{1}{2}(1+\epsilon)}\right) \\
&+\sum_{\substack{f_{1}, \ldots, f_{k} \in \mathbb{A}_{\leq x}^{+} \\
f_{1} \cdots f_{k} \neq \square}} \frac{1}{\sqrt{\left|f_{1}\right| \cdots\left|f_{k}\right|}} O\left(2^{\frac{\operatorname{deg}\left(f_{1} \cdots f_{k}\right)}{2}}(g+1) \sqrt{\left|\mathcal{I}_{g+1}\right|}\right) .
\end{aligned}
$$

Since $x=\frac{2(2 g)}{15 k}$, the second term above can be estimated as

$$
\begin{aligned}
& \leq\left|\mathcal{I}_{g+1}\right|^{\frac{1}{2}(1+\epsilon)} \sum_{f_{1} \in \mathbb{A}_{\leq x}^{+}} \frac{1}{\sqrt{\left|f_{1}\right|} \cdots \sum_{f_{k} \in \mathbb{A}_{\leq x}^{+}} \frac{1}{\sqrt{\left|f_{k}\right|}}} \\
& \ll\left|\mathcal{I}_{g+1}\right|^{\frac{1}{2}(1+\epsilon)} q^{\frac{k x}{2}}=\left|\mathcal{I}_{g+1}\right|^{\frac{17}{30}+\frac{1}{2} \epsilon}
\end{aligned}
$$

and the last term above can be estimated as

$$
\begin{aligned}
& \leq(g+1) \sqrt{\left|\mathcal{I}_{g+1}\right|} \sum_{f_{1} \in \mathbb{A}_{\leq x}^{+}} \frac{2^{\frac{\operatorname{deg}\left(f_{1}\right)}{2}}}{\sqrt{\left|f_{1}\right|}} \cdots \sum_{f_{k} \in \mathbb{A}_{\leq x}^{+}} \frac{2^{\frac{\operatorname{deg}\left(f_{k}\right)}{2}}}{\sqrt{\left|f_{k}\right|}} \\
& \ll(g+1)(2 q)^{\frac{k x}{2}} \sqrt{\left|\mathcal{I}_{g+1}\right|} \ll\left|\mathcal{I}_{g+1}\right|^{\frac{2}{3}} .
\end{aligned}
$$

Hence, we get

$$
\begin{align*}
\mathcal{S}_{2}= & \left|\mathcal{I}_{g+1}\right| \sum_{\substack{f_{1}, \ldots, f_{k} \in \mathbb{A}_{ \pm}^{+} \\
f_{1} \cdots f_{k}=\triangle}} \frac{1}{\sqrt{\left|f_{1}\right| \cdots\left|f_{k}\right|}} \prod_{P \mid f_{1} \cdots f_{k}}\left(1+\frac{1}{|P|}\right)^{-1} \\
& +O\left(\left|\mathcal{I}_{g+1}\right|^{\frac{2}{3}}\right) . \tag{3.3}
\end{align*}
$$

For $f \in \mathbb{A}^{+}$, put

$$
\alpha_{f}=\prod_{P \mid f}\left(1+\frac{1}{|P|}\right)^{-1}
$$

Writing $f_{1} \cdots f_{k}=m^{2}$, we see that

$$
\begin{aligned}
\sum_{m \in \mathbb{A}_{\leq x / 2}^{+}} \frac{d_{k}\left(m^{2}\right)}{|m|} \alpha_{m} & \leq \sum_{\substack{f_{1}, \ldots, f_{k} \in \mathbb{A}_{\leq x}^{+} \\
f_{1} \cdots f_{k}=\triangle}} \frac{1}{\sqrt{\left|f_{1}\right| \cdots\left|f_{k}\right|}} \alpha_{f_{1} \cdots f_{k}} \\
& \leq \sum_{m \in \mathbb{A}_{\leq k x / 2}^{+}} \frac{d_{k}\left(m^{2}\right)}{|m|} \alpha_{m} .
\end{aligned}
$$

It follows from Lemma 2.4 that

$$
\begin{equation*}
\sum_{m \in \mathbb{A}_{\leq x / 2}^{+}} \frac{d_{k}\left(m^{2}\right)}{|m|} \alpha_{m} \sim C(k)\left(\frac{2 g}{15 k}\right)^{\frac{k(k+1)}{2}}, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{m \in \mathbb{A}_{\leq k x / 2}^{+}} \frac{d_{k}\left(m^{2}\right)}{|m|} \alpha_{m} \sim C(k)\left(\frac{2 g}{15}\right)^{\frac{k(k+1)}{2}} . \tag{3.5}
\end{equation*}
$$

From (3.3) with (3.4) and (3.5), we can conclude that

$$
\begin{equation*}
\mathcal{S}_{2} \ll\left|\mathcal{I}_{g+1}\right| g^{k(k+1) / 2} \tag{3.6}
\end{equation*}
$$

3.2. Estimating \mathcal{S}_{1}

In this subsection we follow the arguments in $[1, \S 4.2]$ to estimate \mathcal{S}_{1} and give a proof of the main theorem. Using Lemma 2.1 with $s=\frac{1}{2}$, we have that

$$
L\left(\frac{1}{2}, \chi_{u}\right)=\sum_{f \in \mathbb{A}_{\leq g}^{+}} \frac{\chi_{u}(f)}{\sqrt{|f|}}+\sum_{f \in \mathbb{A}_{\leq g-1}^{+}} \frac{\chi_{u}(f)}{\sqrt{|f|}} .
$$

Since

$$
A(u)^{k-1}=\sum_{f_{1}, \ldots, f_{k-1} \in \mathbb{A}_{\leq x}^{+}} \frac{\chi_{u}\left(f_{1} \cdots f_{k-1}\right)}{\sqrt{\left|f_{1}\right| \cdots\left|f_{k-1}\right|}},
$$

we can write $\mathcal{S}_{1}=\mathcal{S}_{1 ; g}+\mathcal{S}_{1 ; g-1}$, where

$$
\mathcal{S}_{1 ; \ell}=\sum_{\substack{f \in \mathbb{A}_{\leq \ell}^{+} \\ f_{1}, \ldots, f_{k-1} \in \mathbb{A}_{\leq x}^{+}}} \frac{1}{\sqrt{|f|\left|f_{1}\right| \cdots\left|f_{k-1}\right|}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}\left(f f_{1} \cdots f_{k-1}\right)
$$

for $\ell \in\{g, g-1\}$. Write $\mathcal{S}_{1 ; \ell}=\left(\mathcal{S}_{1 ; \ell}\right)_{\square}+\left(\mathcal{S}_{1 ; \ell}\right)_{\neq \square}$, where

$$
\left(\mathcal{S}_{1 ; \ell}\right)_{\square}=\sum_{\substack{f \in \mathbb{A}_{\leq \ell}^{+} \\ f_{1}, \ldots, f_{k-1} \in \mathbb{A}_{\leq x}^{+} \\ f f_{1} \ldots f_{2}-\square}} \frac{1}{\sqrt{|f|\left|f_{1}\right| \cdots\left|f_{k-1}\right|}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}\left(f f_{1} \cdots f_{k-1}\right)
$$

and

$$
\left(\mathcal{S}_{1 ; \ell}\right)_{\neq \square}=\sum_{\substack{f \in \mathbb{A}_{\leq \ell}^{+} \\ f_{1}, \ldots, f_{k-1} \in \mathbb{A}_{\leq x}^{+} \\ f f_{1} \cdots f_{k-1} \neq \square}} \frac{1}{\sqrt{|f|\left|f_{1}\right| \cdots\left|f_{k-1}\right|}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}\left(f f_{1} \cdots f_{k-1}\right) .
$$

We use Proposition 2.3 (1) to obtain that

$$
\begin{aligned}
\left(\mathcal{S}_{1 ; \ell}\right)_{\neq \square} & \ll(g+1) \sqrt{\left|\mathcal{I}_{g+1}\right|} \sum_{f \in \mathbb{A}_{\leq \ell}^{+}} \frac{2^{\frac{\operatorname{deg}(f)}{2}}}{\sqrt{|f|}} \sum_{f_{1} \in \mathbb{A}_{\leq x}^{+}} \frac{2^{\frac{\operatorname{deg}\left(f_{1}\right)}{2}}}{\sqrt{\left|f_{1}\right|}} \cdots \sum_{f_{k-1} \in \mathbb{A}_{\leq x}^{+}} \frac{2^{\frac{\operatorname{deg}\left(f_{k-1}\right)}{2}}}{\sqrt{\left|f_{k-1}\right|}} \\
& \ll(g+1)(2 q)^{\frac{\ell+x(k-1)}{2}} \sqrt{\left|\mathcal{I}_{g+1}\right|} \ll\left|\mathcal{I}_{g+1}\right|^{\frac{59}{60}}
\end{aligned}
$$

We use Proposition 2.3 (2) to obtain that

$$
\begin{aligned}
\left(\mathcal{S}_{1 ; \ell}\right) \square=\left|\mathcal{I}_{g+1}\right| & \sum_{\substack{f \in \mathbb{A}_{\leq \ell}^{+} \\
f_{1}, \ldots, f_{k-1} \in \mathbb{A}_{\leq x}^{+} \\
f f_{1} \cdots f_{k-1}=\square}} \frac{1}{\sqrt{|f|\left|f_{1}\right| \cdots\left|f_{k-1}\right|}} \prod_{P \mid f f_{1} \cdots f_{k-1}}\left(1+\frac{1}{|P|}\right)^{-1} \\
& +O\left(\left|\mathcal{I}_{g+1}\right|^{\frac{1}{2}(1+\epsilon)} \sum_{\substack{f \in \mathbb{A}_{\leq \ell}^{+} \\
f_{1}, \ldots, f_{k-1} \in \mathbb{A}_{\leq x}^{+} \\
f f_{1} \cdots f_{k-1}=\square}} \frac{1}{\sqrt{|f|\left|f_{1}\right| \cdots\left|f_{k-1}\right|}}\right)
\end{aligned}
$$

The error term above is bounded by

$$
\begin{aligned}
& \left|\mathcal{I}_{g+1}\right|^{\frac{1}{2}(1+\epsilon)} \sum_{f \in \mathbb{A}_{\leq \ell}^{+}} \frac{1}{\sqrt{|f|}} \sum_{f_{1} \in \mathbb{A}_{\leq x}^{+}} \frac{1}{\sqrt{\left|f_{1}\right|}} \cdots \sum_{f_{k-1} \in \mathbb{A}_{\leq x}^{+}} \frac{1}{\sqrt{\left|f_{k-1}\right|}} \\
& \quad \ll q^{\frac{g+x(k-1)}{2}}\left|\mathcal{I}_{g+1}\right|^{\frac{1}{2}(1+\epsilon)} \ll\left|\mathcal{I}_{g+1}\right|^{\frac{49}{60}+\frac{1}{2} \epsilon}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \mathcal{S}_{1 ; \ell}=\left|\mathcal{I}_{g+1}\right| \\
& \sum_{\substack{f \in \mathbb{A}_{\leq \ell}^{+} \\
f_{1}, \ldots, f_{k-1} \in \mathbb{A}_{\leq x}^{+} \\
f f_{1} \cdots f_{k-1}=\square}} \frac{1}{\sqrt{|f|\left|f_{1}\right| \cdots\left|f_{k-1}\right|}} \prod_{P \mid f f_{1} \cdots f_{k-1}}\left(1+\frac{1}{|P|}\right)^{-1} \\
&+O\left(\left|\mathcal{I}_{g+1}\right|^{\frac{59}{60}}\right)
\end{aligned}
$$

Write $f_{1} \cdots f_{k-1}=r h^{2}$, where $r, h \in \mathbb{A}^{+}$and r is square-free. If $f f_{1} \cdots f_{k-1}$ is a square, then f is of the form $r l^{2}$ for some $l \in \mathbb{A}^{+}$. With this notation, the main term contribution is

$$
\begin{equation*}
\left|\mathcal{I}_{g+1}\right| \sum_{\substack{f_{1}, \ldots, f_{k-1} \in \mathbb{A}_{\leq x}^{+} \\ f_{1} \cdots f_{k-1}=r h^{2}}} \frac{1}{|r h|} \sum_{l \in \mathbb{A}_{\leq(\ell-\operatorname{deg}(r)) / 2}^{+}} \frac{1}{|l|} \alpha_{r h l} . \tag{3.7}
\end{equation*}
$$

As in $[1,(4.39)]$, we have

$$
\sum_{l \in \mathbb{A}_{\leq(\ell-\operatorname{deg}(r)) / 2}^{+}} \frac{1}{|l|} \alpha_{r h l} \sim C(r, h) \alpha_{r h} g
$$

for some positive constant $C(r, h)$. Thus, (3.7) is

$$
\gg g\left|\mathcal{I}_{g+1}\right| \sum_{\substack{r, h \in \mathbb{A}^{+} \\ \operatorname{deg}\left(r h^{2}\right) \leq x}} \frac{d_{k-1}\left(r h^{2}\right)}{|r h|} \alpha_{r h} \gg\left|\mathcal{I}_{g+1}\right| g^{k(k+1) / 2}
$$

where the last bound follows from Lemma 2.4. Hence, we obtain that

$$
\mathcal{S}_{1 ; \ell} \gg\left|\mathcal{I}_{g+1}\right| g^{k(k+1) / 2}
$$

for $\ell \in\{g, g-1\}$. Therefore we can conclude that

$$
\begin{equation*}
\mathcal{S}_{1} \gg\left|\mathcal{I}_{g+1}\right| g^{k(k+1) / 2} \tag{3.8}
\end{equation*}
$$

Combining (3.6) and (3.8), we complete the proof of Theorem 1.1.

References

[1] J. Andrade, Rudnick and Soundararajan's theorem for function fields, Finite Fields Appl., 37 (2016), 311-327.
[2] S. Bae and H. Jung, Average values of L-functions in even characteristic, J. Number Theory, 186 (2018), 269-303.
[3] Z. Rudnick and K. Soundararajan, Lower bounds for moments of L-functions, Proc. Natl. Acad. Sci., 102 (2005), 6837-6838.
[4] Z. Rudnick and K. Soundararajan, Lower bounds for moments of L-functions: symplectic and orthogonal examples, Proc. Sympos. Pure Math., 75 (2006), 293303.

Hwanyup Jung
Department of Mathematics Education Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: hyjung@chungbuk.ac.kr

[^0]: Received October 13, 2021; Accepted November 30, 2021.
 2010 Mathematics Subject Classification: Primary 11M38, 11G20; Secondary 11M50.

 Key words and phrases: Function fields, Lower bounds for moments, Moments of L-functions, Quadratic Dirichlet L-functions, Even characteristic.

 This work was financially supported by the Research Year of Chungbuk National University in 2021.

