Acknowledgement
I would like to thank the referees for their careful reading.
References
- T. Bridgeland, A. King & M. Reid: The McKay correspondence as an equivalence of derived categories. J. Amer. Math. Soc. 14 (2001), no. 3, 535-554. https://doi.org/10.1090/S0894-0347-01-00368-X
- D. Cox, J. Little & H. Schenck: Toric Varieties, Graduate Studies in Mathematics 124. American Mathematical Society, Providence, RI, 2011.
- A. Craw, D. Maclagan & R.R. Thomas: Moduli of McKay quiver representations I: The coherent component. Proc. Lond. Math. Soc. (3) 95 (2007), no. 1, 179-198. https://doi.org/10.1112/plms/pdm009
- A. Ishii: On the McKay correspondence for a finite small subgroup of GL(2, ℂ). J. Reine Angew. Math. 549 (2002), 221-233.
- Y. Ito & I. Nakamura: Hilbert schemes and simple singularities. New trends in algebraic geometry (Warwick, 1996), 151-233, London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press, Cambridge, 1999.
- S.-J. Jung: Terminal quotient singularities in dimension three via variation of GIT. J. Algebra 468 (2016), 354-394. https://doi.org/10.1016/j.jalgebra.2016.08.032
- I. Nakamura: Hilbert schemes of abelian group orbits. J. Algebraic. Geom. 10 (2001), no. 4, 757-779.
- M. Reid: Surface cyclic quotient singularities and HirzebruchJung resolutions. preprint(1997), Available at: homepages.warwick.ac.uk/masda/surf/more/cyclic.pdf.