COMMON n-TUPLED FIXED POINT THEOREM UNDER GENERALIZED MIZOGUCHI-TAKAHASHI CONTRACTION FOR HYBRID PAIR OF MAPPINGS

Bhavana Deshpande ${ }^{\text {a,* }}$ and Amrish Handa ${ }^{\text {b }}$

Abstract

We establish a common n-tupled fixed point theorem for hybrid pair of mappings under generalized Mizoguchi-Takahashi contraction. An example is given to validate our results. We improve, extend and generalize several known results.

1. Introduction and Preliminaries

Let (X, d) be a metric space. We denote by 2^{X} the class of all nonempty subsets of X, by $C L(X)$ the class of all nonempty closed subsets of X, by $C B(X)$ the class of all nonempty closed bounded subsets of X and by $K(X)$ the class of all nonempty compact subsets of X. A functional $H: C L(X) \times C L(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ is said to be the Pompeiu-Hausdorff generalized metric induced by d is given by
for all $A, B \in C L(X)$, where $D(x, A)=\inf _{a \in A} d(x, a)$ denote the distance from x to $A \subset X$. For simplicity, if $x \in X$, we denote $g(x)$ by $g x$.

The existence of fixed points for various multivalued contractions and non-expansive mappings has been studied by many authors under different conditions which was initiated by Markin [17]. For details, we refer $[1,5,6,7,8,9,13,14,15,18,19,21$, $22]$ and the reference therein to the readers. The theory of multivalued mappings has application in control theory, convex optimization, differential inclusions and economics.

[^0]In [2], Gnana-Bhaskar and Lakshmikantham established some coupled fixed point theorems and applied these results to study the existence and uniqueness of solution for periodic boundary value problems. Lakshmikantham and Ciric [16] proved coupled coincidence and common coupled fixed point theorems for nonlinear contractive mappings in partially ordered complete metric spaces, extended and generalized the results of Gnana-Bhaskar and Lakshmikantham [2].

Nadler [19] extended the famous Banach Contraction Principle [3] from singlevalued mapping to multi-valued mapping. Mizoguchi and Takahashi [18] proved the following generalization of Nadler's fixed point theorem for a weak contraction.

Theorem 1.1. Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ be a multivalued mapping. Assume that

$$
H(T x, T y) \leq \psi(d(x, y)) d(x, y),
$$

for all $x, y \in X$, where ψ is a function from $[0, \infty)$ into $[0,1)$ satisfying $\limsup _{s \rightarrow t+} \psi(s)<$ 1 for all $t \geq 0$. Then T has a fixed point.

Amini-Harandi and O'Regan [1] obtained a generalization of Mizoguchi and Takahashi's fixed point theorem. Recently Ciric et al. [4] proved coupled fixed point theorems for mixed monotone mappings satisfying a generalized Mizoguchi-Takahashi's condition in the setting of ordered metric spaces. Main results of Ciric et al. [4] extended and generalized the results of Gnana-Bhaskar and Lakshmikantham [2], Du [10] and Harjani et al. [11].

Imdad et al. [12] introduced the concept of n-tupled fixed point, n-tupled coincidence point and proved some n-tupled coincidence point and n-tupled fixed point results for single valued mapping.

These concepts were extended by Deshpande and Handa [8] to multivalued mappings and obtained n-tupled coincidence point and common n-tupled fixed point theorems involving hybrid pair of mappings under generalized Mizoguchi-Takahashi contraction.

Definition 2.1 ([8]). Let X be a nonempty set, $F: X^{r} \rightarrow 2^{X}$ and g be a selfmapping on X. An element $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in X^{r}$ is called
(1) an r-tupled fixed point of F if $x^{1} \in F\left(x^{1}, x^{2}, \ldots, x^{r}\right), x^{2} \in F\left(x^{2}, \ldots, x^{r}, x^{1}\right)$, $\ldots, x^{r} \in F\left(x^{r}, x^{1}, \ldots, x^{r-1}\right)$.
(1) an r-tupled coincidence point of hybrid pair (F, g) if $g x^{1} \in F\left(x^{1}, x^{2}, \ldots, x^{r}\right)$, $g x^{2} \in F\left(x^{2}, \ldots, x^{r}, x^{1}\right), \ldots, g x^{r} \in F\left(x^{r}, x^{1}, \ldots, x^{r-1}\right)$.
(2) a common r-tupled fixed point of hybrid pair (F, g) if $x^{1}=g x^{1} \in F\left(x^{1}, x^{2}\right.$, $\left.\ldots, x^{r}\right), x^{2}=g x^{2} \in F\left(x^{2}, \ldots, x^{r}, x^{1}\right), \ldots, x^{r}=g x^{r} \in F\left(x^{r}, x^{1}, \ldots, x^{r-1}\right)$.

We denote the set of r-tupled coincidence points of mappings F and g by $C(F$, $g)$. Note that if $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$, then $\left(x^{2}, \ldots, x^{r}, x^{1}\right), \ldots,\left(x^{r}, x^{1}, \ldots, x^{r-1}\right)$ are also in $C(F, g)$.

Definition 2.2 ([8]). Let $F: X^{r} \rightarrow 2^{X}$ be a multivalued mapping and g be a self-mapping on X. The hybrid pair (F, g) is called w-compatible if $g F\left(x^{1}, x^{2}, \ldots\right.$, $\left.x^{r}\right) \subseteq F\left(g x^{1}, g x^{2}, \ldots, g x^{r}\right)$ whenever $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$.

Definition 2.3 ([8]). Let $F: X^{r} \rightarrow 2^{X}$ be a multivalued mapping and g be a self-mapping on X. The mapping g is called F-weakly commuting at some point $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in X^{r}$ if $g^{2} x^{1} \in F\left(g x^{1}, g x^{2}, \ldots, g x^{r}\right), g^{2} x^{2} \in F\left(g x^{2}, \ldots, g x^{r}, g x^{1}\right), \ldots$, $g^{2} x^{r} \in F\left(g x^{r}, g x^{1}, \ldots, g x^{r-1}\right)$.

Lemma 2.1 ([20]). Let (X, d) be a metric space. Then, for each $a \in X$ and $B \in$ $K(X)$, there is $b_{0} \in B$ such that $D(a, B)=d\left(a, b_{0}\right)$, where $D(a, B)=\inf _{b \in B} d(a, b)$.

In this paper, we establish a common n-tupled fixed point theorem for hybrid pair of mappings under generalized Mizoguchi-Takahashi contraction. We improve, extend and generalize the results of Amini-Harandi and O'Regan [1], Bhaskar and Lakshmikantham [2], Ciric et al. [4], Du [10], Harjani et al. [11] and Mizoguchi and Takahashi [18]. An example which demonstrates the effectiveness of our result has also been cited.

2. Main Results

Let Φ denote the set of all functions $\varphi:[0, \infty) \rightarrow[0, \infty)$ satisfying

$$
\begin{aligned}
& \left(i_{\varphi}\right) \varphi \text { is non-decreasing, } \\
& \left(i i_{\varphi}\right) \varphi(t)=0 \Leftrightarrow t=0 \\
& \left(i i i_{\varphi}\right) \lim _{t \rightarrow 0+} \frac{t}{\varphi(t)}<\infty
\end{aligned}
$$

Let Ψ denote the set of all functions $\psi:[0, \infty) \rightarrow[0,1)$ which satisy $\lim _{r \rightarrow t+} \psi(r)<1$ for all $t \geq 0$.

Theorem 2.1. Let (X, d) be a metric space. Suppose $F: X^{r} \rightarrow K(X)$ and $g: X \rightarrow X$ are two mappings for which there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{equation*}
\varphi\left(H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)\right) \tag{2.1}
\end{equation*}
$$

$$
\begin{aligned}
& \leq \psi\left(\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), d\left(g x^{2}, g y^{2}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}\right)\right) \\
& \times \varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), d\left(g x^{2}, g y^{2}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}\right)
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$. Furthermore assume that $F\left(X^{r}\right) \subseteq g(X)$ and $g(X)$ is a complete subset of X. Then F and g have an r-tupled coincidence point. Moreover, F and g have a common r-tupled fixed point, if one of the following conditions holds.
(a) F and g are w-compatible. $\lim _{i \rightarrow \infty} g^{i} x^{1}=y^{1}, \lim _{i \rightarrow \infty} g^{i} x^{2}=y^{2}, \ldots, \lim _{i \rightarrow \infty} g^{i} x^{r}$ $=y^{r}$, for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and for some $y^{1}, y^{2}, \ldots, y^{r} \in X$ and g is continuous at $y^{1}, y^{2}, \ldots, y^{r}$.
(b) g is F-weakly commuting for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and $g x^{1}, g x^{2}$, $\ldots, g x^{r}$ are fixed points of g, that is, $g^{2} x^{1}=g x^{1}, g^{2} x^{2}=g x^{2}, \ldots, g^{2} x^{r}=g x^{r}$.
(c) g is continuous at $x^{1}, x^{2}, \ldots, x^{r} . \lim _{i \rightarrow \infty} g^{i} y^{1}=x^{1}, \lim _{i \rightarrow \infty} g^{i} y^{2}=x^{2}, \ldots$, $\lim _{i \rightarrow \infty} g^{i} y^{r}=x^{r}$ for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and for some y^{1}, y^{2}, \ldots, $y^{r} \in X$.
(d) $g(C(F, g))$ is a singleton subset of $C(F, g)$.

Proof. Let $x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{r} \in X$ be arbitrary. Then $F\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{r}\right), F\left(x_{0}^{2}, \ldots\right.$, $\left.x_{0}^{r}, x_{0}^{1}\right), \ldots, F\left(x_{0}^{r}, x_{0}^{1}, \ldots, x_{0}^{r-1}\right)$ are well defined. Choose $g x_{1}^{1} \in F\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{r}\right)$, $g x_{1}^{2} \in F\left(x_{0}^{2}, \ldots, x_{0}^{r}, x_{0}^{1}\right), \ldots, g x_{0}^{r} \in F\left(x_{0}^{r}, x_{0}^{1}, \ldots, x_{0}^{r-1}\right)$ because $F\left(X^{r}\right) \subseteq g(X)$. Since $F: X^{r} \rightarrow K(X)$, therefore by Lemma 2.1, there exist $z^{1} \in F\left(x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{r}\right)$, $z^{2} \in F\left(x_{1}^{2}, \ldots, x_{1}^{r}, x_{1}^{1}\right) \ldots, z^{r} \in F\left(x_{1}^{r}, x_{1}^{1}, \ldots, x_{1}^{r-1}\right)$ such that

$$
\begin{aligned}
d\left(g x_{1}^{1}, z^{1}\right) \leq & H\left(F\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{r}\right), F\left(x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{r}\right)\right) \\
d\left(g x_{1}^{2}, z^{2}\right) \leq & H\left(F\left(x_{0}^{2}, \ldots, x_{0}^{r}, x_{0}^{1}\right), F\left(x_{1}^{2}, \ldots, x_{1}^{r}, x_{1}^{1}\right)\right) \\
& \ldots \\
d\left(g x_{1}^{r}, z^{r}\right) \leq & H\left(F\left(x_{0}^{r}, x_{0}^{1}, \ldots, x_{0}^{r-1}\right), F\left(x_{1}^{r}, x_{1}^{1}, \ldots, x_{1}^{r-1}\right)\right)
\end{aligned}
$$

Since $F\left(X^{r}\right) \subseteq g(X)$, there exist $x_{2}^{1}, x_{2}^{2}, \ldots, x_{2}^{r} \in X$ such that $z^{1}=g x_{2}^{1}, z^{2}=g x_{2}^{2}$, $\ldots, z^{r}=g x_{2}^{r}$. Thus

$$
\begin{aligned}
d\left(g x_{1}^{1}, g x_{2}^{1}\right) \leq & H\left(F\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{r}\right), F\left(x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{r}\right)\right) \\
d\left(g x_{1}^{2}, g x_{2}^{2}\right) \leq & H\left(F\left(x_{0}^{2}, \ldots, x_{0}^{r}, x_{0}^{1}\right), F\left(x_{1}^{2}, \ldots, x_{1}^{r}, x_{1}^{1}\right)\right) \\
& \ldots \\
d\left(g x_{1}^{r}, g x_{2}^{r}\right) \leq & H\left(F\left(x_{0}^{r}, x_{0}^{1}, \ldots, x_{0}^{r-1}\right), F\left(x_{1}^{r}, x_{1}^{1}, \ldots, x_{1}^{r-1}\right)\right)
\end{aligned}
$$

Continuing this process, we obtain sequences $\left\{x_{i}^{1}\right\} \subset X,\left\{x_{i}^{2}\right\} \subset X, \ldots,\left\{x_{i}^{r}\right\} \subset X$ such that for all $i \in \mathbb{N}$, we have $x_{i+1}^{1} \in F\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{r}\right), x_{i+1}^{2} \in F\left(x_{i}^{2}, \ldots, x_{i}^{r}, x_{i}^{1}\right)$, $\ldots, x_{i+1}^{r} \in F\left(x_{i}^{r}, x_{i}^{1}, \ldots, x_{i}^{r-1}\right)$ such that

$$
\begin{aligned}
d\left(g x_{i}^{1}, g x_{i+1}^{1}\right) \leq & H\left(F\left(x_{i-1}^{1}, x_{i-1}^{2}, \ldots, x_{i-1}^{r}\right), F\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{r}\right)\right), \\
d\left(g x_{i}^{2}, g x_{i+1}^{2}\right) \leq & H\left(F\left(x_{i-1}^{2}, \ldots, x_{i-1}^{r}, x_{i-1}^{1}\right), F\left(x_{i}^{2}, \ldots, x_{i}^{r}, x_{i}^{1}\right)\right), \\
& \ldots \\
d\left(g x_{i}^{r}, g x_{i+1}^{r}\right) \leq & H\left(F\left(x_{i-1}^{r}, x_{i-1}^{1}, \ldots, x_{i-1}^{r-1}\right), F\left(x_{i}^{r}, x_{i}^{1}, \ldots, x_{i}^{r-1}\right)\right),
\end{aligned}
$$

which implies, by $\left(i_{\varphi}\right)$ and (2.1), we have

$$
\begin{aligned}
& \varphi\left(d\left(g x_{i}^{1}, g x_{i+1}^{1}\right)\right) \\
\leq & \varphi\left(H\left(F\left(x_{i-1}^{1}, x_{i-1}^{2}, \ldots, x_{i-1}^{r}\right), F\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{r}\right)\right)\right) \\
\leq & \psi\left(\varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right)\right) \\
& \times \varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right) .
\end{aligned}
$$

Thus

$$
\begin{align*}
& \varphi\left(d\left(g x_{i}^{1}, g x_{i+1}^{1}\right)\right) \tag{2.2}\\
& \leq \psi\left(\varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right)\right) \\
& \times \varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right),
\end{align*}
$$

which, by the fact that $\psi<1$, implies

$$
\varphi\left(d\left(g x_{i}^{1}, g x_{i+1}^{1}\right)\right) \leq \varphi\left(\max \left\{\begin{array}{c}
d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \\
\ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)
\end{array}\right\}\right) .
$$

Similarly

$$
\begin{aligned}
& \varphi\left(d\left(g x_{i}^{2}, g x_{i+1}^{2}\right)\right) \leq \varphi\left(\max \left\{\begin{array}{c}
d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \\
\ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)
\end{array}\right\}\right), \\
& \varphi\left(d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right) \leq \varphi\left(\max \left\{\begin{array}{c}
d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \\
\ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)
\end{array}\right\}\right),
\end{aligned}
$$

Combining them, we get

$$
\begin{aligned}
& \max \left\{\varphi\left(d\left(g x_{i}^{1}, g x_{i+1}^{1}\right)\right), \varphi\left(d\left(g x_{i}^{2}, g x_{i+1}^{2}\right)\right), \ldots, \varphi\left(d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right)\right\} \\
\leq & \varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right) .
\end{aligned}
$$

Since φ is non-decreasing, it follows that

$$
\begin{align*}
& \varphi\left(\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}\right) \tag{2.3}\\
& \leq \varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right),
\end{align*}
$$

for all $i \geq 0$. Now (2.3) shows that $\left\{\varphi\left(\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}\right.\right.\right.\right.$, $\left.\left.\left.\left.g x_{i+1}^{r}\right)\right\}\right)\right\}$ is a non-increasing sequence. Thus there exists $\delta \geq 0$ such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \varphi\left(\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}\right)=\delta . \tag{2.4}
\end{equation*}
$$

Since $\psi \in \Psi$, we have $\lim _{r \rightarrow \delta+} \psi(r)<1$ and $\psi(\delta)<1$. Then there exist $\alpha \in[0,1)$ and $\varepsilon>0$ such that $\psi(r) \leq \alpha$ for all $r \in[\delta, \delta+\varepsilon)$. From (2.4), we can take $i_{0} \geq 0$ such that $\delta \leq \varphi\left(\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}\right) \leq \delta+\varepsilon$ for all $i \geq i_{0}$. Then from (2.1), for all $i \geq i_{0}$, we have

$$
\begin{aligned}
& \varphi\left(d\left(g x_{i}^{1}, g x_{i+1}^{1}\right)\right) \\
\leq & \psi\left(\varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right)\right) \\
& \times \varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right) \\
\leq & \alpha \varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right) .
\end{aligned}
$$

Thus

$$
\varphi\left(d\left(g x_{i}^{1}, g x_{i+1}^{1}\right)\right) \leq \alpha \varphi\left(\max \left\{\begin{array}{c}
d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \\
\ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)
\end{array}\right\}\right) .
$$

Similarly, for all $i \geq i_{0}$, we have

$$
\begin{aligned}
& \varphi\left(d\left(g x_{i}^{2}, g x_{i+1}^{2}\right)\right) \leq \alpha \varphi\left(\max \left\{\begin{array}{c}
d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \\
\ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)
\end{array}\right\}\right), \\
& \ldots \\
& \varphi\left(d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right) \leq \alpha \varphi\left(\max \left\{\begin{array}{c}
d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \\
\ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)
\end{array}\right\}\right) .
\end{aligned}
$$

Combining them, we get

$$
\begin{aligned}
& \max \left\{\varphi\left(d\left(g x_{i}^{1}, g x_{i+1}^{1}\right)\right), \varphi\left(d\left(g x_{i}^{2}, g x_{i+1}^{2}\right)\right), \ldots, \varphi\left(d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right)\right\} \\
\leq & \alpha \varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right) .
\end{aligned}
$$

Since φ is non-decreasing, it follows that

$$
\begin{align*}
& \varphi\left(\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}\right) \tag{2.5}\\
& \leq \alpha \varphi\left(\max \left\{d\left(g x_{i-1}^{1}, g x_{i}^{1}\right), d\left(g x_{i-1}^{2}, g x_{i}^{2}\right), \ldots, d\left(g x_{i-1}^{r}, g x_{i}^{r}\right)\right\}\right),
\end{align*}
$$

for all $i \geq i_{0}$. Letting $i \rightarrow \infty$ in (2.5) and using (2.4), we obtain that $\delta \leq \alpha \delta$. Since $\alpha \in[0,1)$, therefore $\delta=0$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi\left(\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}\right)=0 \tag{2.6}
\end{equation*}
$$

Since $\left\{\varphi\left(\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}\right)\right\}$ is a non-increasing sequence and φ is non-decreasing, $\left\{\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}\right.\right.\right.$, $\left.\left.\left.g x_{i+1}^{r}\right)\right\}\right\}$ is also a non-increasing sequence of positive numbers. Thus there exists $\theta \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}=\theta .
$$

Since φ is non-decreasing, we have

$$
\begin{equation*}
\varphi\left(\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}\right) \geq \varphi(\theta) . \tag{2.7}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (2.7), by using (2.6), we get $0 \geq \varphi(\theta)$ which implies, by ($\left(i i_{\varphi}\right)$, that $\theta=0$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}=0 . \tag{2.8}
\end{equation*}
$$

Suppose that $\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}=0$ for some $i \geq 0$. Then, we have $d\left(g x_{i}^{1}, g x_{i+1}^{1}\right)=0, d\left(g x_{i}^{2}, g x_{i+1}^{2}\right)=0, \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)=0$ which implies that $g x_{i}^{1}=g x_{i+1}^{1} \in F\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{r}\right), g x_{i}^{2}=g x_{i+1}^{2} \in F\left(x_{i}^{2}, \ldots, x_{i}^{r}\right.$, $\left.x_{i}^{1}\right), \ldots, g x_{i}^{r}=g x_{i+1}^{r} \in F\left(x_{i}^{r}, x_{i}^{1}, \ldots, x_{i}^{r-1}\right)$, that is, $\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{r}\right)$ is an r-tupled coincidence point of F and g. Now, suppose that

$$
\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\} \neq 0, \text { for all } i \geq 0
$$

Suppose $a_{i}=\varphi\left(\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}\right)$, for all $i \geq$ 0 . From (2.5), we have $a_{i} \leq \alpha a_{i-1}$ for all $i \geq i_{0}$. Then, we have

$$
\begin{equation*}
\sum_{i=0}^{\infty} a_{i} \leq \sum_{i=0}^{i_{0}} a_{i}+\sum_{i=i_{0}+1}^{\infty} \alpha^{i-i_{0}} a_{i_{0}}<\infty . \tag{2.9}
\end{equation*}
$$

On the other hand, by $\left(i i i_{\varphi}\right)$, we have

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \frac{\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}}{\varphi\left(\max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}, g x_{i+1}^{r}\right)\right\}\right)}<\infty . \tag{2.10}
\end{equation*}
$$

Thus, by (2.9) and (2.10), we have $\sum \max \left\{d\left(g x_{i}^{1}, g x_{i+1}^{1}\right), d\left(g x_{i}^{2}, g x_{i+1}^{2}\right), \ldots, d\left(g x_{i}^{r}\right.\right.$, $\left.\left.g x_{i+1}^{r}\right)\right\}<\infty$. It means that $\left\{g x_{i}^{1}\right\}_{i=0}^{\infty},\left\{g x_{i}^{2}\right\}_{i=0}^{\infty}, \ldots,\left\{g x_{i}^{r}\right\}_{i=0}^{\infty}$ are Cauchy sequences
in $g(X)$. Since $g(X)$ is complete, this implies that there exist $x^{1}, x^{2}, \ldots, x^{r} \in X$ such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} g x_{i}^{1}=g x^{1}, \quad \lim _{i \rightarrow \infty} g x_{i}^{2}=g x^{2}, \ldots, \quad \lim _{i \rightarrow \infty} g x_{i}^{r}=g x^{r} \tag{2.11}
\end{equation*}
$$

Now, since $g x_{i+1}^{1} \in F\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{r}\right), g x_{i+1}^{2} \in F\left(x_{i}^{2}, \ldots, x_{i}^{r}, x_{i}^{1}\right), \ldots, g x_{i+1}^{r} \in F\left(x_{i}^{r}\right.$, $x_{i}^{1}, \ldots, x_{i}^{r-1}$), by using condition (2.1), we get

$$
\begin{aligned}
& \varphi\left(D\left(g x_{i+1}^{1}, F\left(x^{1}, x^{2}, \ldots, x^{r}\right)\right)\right) \\
\leq & \varphi\left(H\left(F\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{r}\right), F\left(x^{1}, x^{2}, \ldots, x^{r}\right)\right)\right) \\
\leq & \psi\left(\varphi\left(\max \left\{d\left(g x_{i}^{1}, g x^{1}\right), d\left(g x_{i}^{2}, g x^{2}\right), \ldots, d\left(g x_{i}^{r}, g x^{r}\right)\right\}\right)\right) \\
& \times \varphi\left(\max \left\{d\left(g x_{i}^{1}, g x^{1}\right), d\left(g x_{i}^{2}, g x^{2}\right), \ldots, d\left(g x_{i}^{r}, g x^{r}\right)\right\}\right)
\end{aligned}
$$

which, by the fact that $\psi<1$, implies

$$
\begin{aligned}
& \varphi\left(D\left(g x_{i+1}^{1}, F\left(x^{1}, x^{2}, \ldots, x^{r}\right)\right)\right) \\
\leq & \varphi\left(\max \left\{d\left(g x_{i}^{1}, g x^{1}\right), d\left(g x_{i}^{2}, g x^{2}\right), \ldots, d\left(g x_{i}^{r}, g x^{r}\right)\right\}\right)
\end{aligned}
$$

Since φ is non-decreasing, we have

$$
\begin{align*}
& D\left(g x_{i+1}^{1}, F\left(x^{1}, x^{2}, \ldots, x^{r}\right)\right) \tag{2.12}\\
& \leq \max \left\{d\left(g x_{i}^{1}, g x^{1}\right), d\left(g x_{i}^{2}, g x^{2}\right), \ldots, d\left(g x_{i}^{r}, g x^{r}\right)\right\}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (2.12), by using (2.11), we obtain

$$
D\left(g x^{1}, F\left(x^{1}, x^{2}, \ldots, x^{r}\right)\right)=0
$$

Similarly, we can get

$$
D\left(g x^{2}, F\left(x^{2}, \ldots, x^{r}, x^{1}\right)\right)=0, \ldots, D\left(g x^{r}, F\left(x^{r}, x^{1}, \ldots, x^{r-1}\right)\right)=0
$$

which implies that

$$
\begin{aligned}
g x^{1} & \in F\left(x^{1}, x^{2}, \ldots, x^{r}\right) \\
g x^{2} & \in F\left(x^{2}, \ldots, x^{r}, x^{1}\right) \\
\ldots, g x^{r} & \in F\left(x^{r}, x^{1}, \ldots, x^{r-1}\right)
\end{aligned}
$$

that is, $\left(x^{1}, x^{2}, \ldots, x^{r}\right)$ is an r-tupled coincidence point of F and g.
Suppose now that (a) holds. Assume that for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} g^{i} x^{1}=y^{1}, \quad \lim _{i \rightarrow \infty} g^{i} x^{2}=y^{2}, \ldots, \quad \lim _{i \rightarrow \infty} g^{i} x^{r}=y^{r} \tag{2.13}
\end{equation*}
$$

where $y^{1}, y^{2}, \ldots, y^{r} \in X$. Since g is continuous at $y^{1}, y^{2}, \ldots, y^{r}$. We have

$$
\begin{equation*}
g y^{1}=y^{1}, g y^{2}=y^{2}, \ldots, g y^{r}=y^{r} \tag{2.14}
\end{equation*}
$$

As F and g are w-compatible, so, for all $i \geq 1$,

$$
\begin{gather*}
g^{i} x^{1} \in F\left(g^{i-1} x^{1}, g^{i-1} x^{2}, \ldots, g^{i-1} x^{r}\right) \\
g^{i} x^{2} \in F\left(g^{i-1} x^{2}, \ldots, g^{i-1} x^{r}, g^{i-1} x^{1}\right) \tag{2.15}\\
\ldots, g^{i} x^{r} \in F\left(g^{i-1} x^{r}, g^{i-1} x^{1}, \ldots, g^{i-1} x^{r-1}\right)
\end{gather*}
$$

Now, by using (2.1) and (2.15), we obtain

$$
\begin{aligned}
& \varphi\left(D\left(g^{i} x^{1}, F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)\right) \\
\leq & \varphi\left(H\left(F\left(g^{i-1} x^{1}, g^{i-1} x^{2}, \ldots, g^{i-1} x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)\right) \\
\leq & \psi\left(\varphi\left(\max \left\{d\left(g^{i} x^{1}, g y^{1}\right), d\left(g^{i} x^{2}, g y^{2}\right), \ldots, d\left(g^{i} x^{r}, g y^{r}\right)\right\}\right)\right) \\
& \times \varphi\left(\max \left\{d\left(g^{i} x^{1}, g y^{1}\right), d\left(g^{i} x^{2}, g y^{2}\right), \ldots, d\left(g^{i} x^{r}, g y^{r}\right)\right\}\right)
\end{aligned}
$$

which implies, by $\left(i_{\varphi}\right)$ and (2.1), we have

$$
\begin{aligned}
& \varphi\left(D\left(g^{i} x^{1}, F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)\right) \\
\leq & \varphi\left(\max \left\{d\left(g^{i} x^{1}, g y^{1}\right), d\left(g^{i} x^{2}, g y^{2}\right), \ldots, d\left(g^{i} x^{r}, g y^{r}\right)\right\}\right)
\end{aligned}
$$

Since φ is non-decreasing, we have

$$
\begin{align*}
& D\left(g^{i} x^{1}, F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right) \tag{2.16}\\
& \leq \max \left\{d\left(g^{i} x^{1}, g y^{1}\right), d\left(g^{i} x^{2}, g y^{2}\right), \ldots, d\left(g^{i} x^{r}, g y^{r}\right)\right\}
\end{align*}
$$

On taking limit as $n \rightarrow \infty$ in (2.16), by using (2.13) and (2.14), we get

$$
D\left(g y^{1}, F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)=0
$$

Similarly, we can get

$$
D\left(g y^{2}, F\left(y^{2}, \ldots, y^{r}, y^{1}\right)\right)=0, \ldots, D\left(g y^{r}, F\left(y^{r}, y^{1}, \ldots, y^{r-1}\right)\right)=0
$$

which implies that

$$
\begin{aligned}
g y^{1} & \in F\left(y^{1}, y^{2}, \ldots, y^{r}\right) \\
g y^{2} & \in F\left(y^{2}, \ldots, y^{r}, y^{1}\right) \\
\ldots, g y^{r} & \in F\left(y^{r}, y^{1}, \ldots, y^{r-1}\right)
\end{aligned}
$$

Now, by (2.14), we have

$$
\begin{aligned}
y^{1} & =g y^{1} \in F\left(y^{1}, y^{2}, \ldots, y^{r}\right) \\
y^{2} & =g y^{2} \in F\left(y^{2}, \ldots, y^{r}, y^{1}\right) \\
\ldots, y^{r} & =g y^{r} \in F\left(y^{r}, y^{1}, \ldots, y^{r-1}\right),
\end{aligned}
$$

that is, $\left(y^{1}, y^{2}, \ldots, y^{r}\right)$ is a common r-tupled fixed point of F and g.

Suppose now that (b) holds. Assume that for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$, g is F-weakly commuting, that is, $g^{2} x^{1} \in F\left(g x^{1}, g x^{2}, \ldots, g x^{r}\right), g^{2} x^{2} \in F\left(g x^{2}\right.$, $\left.\ldots, g x^{r}, g x^{1}\right), \ldots, g^{2} x^{r} \in F\left(g x^{r}, g x^{1}, \ldots, g x^{r-1}\right)$ and $g^{2} x^{1}=g x^{1}, g^{2} x^{2}=g x^{2}, \ldots$, $g^{2} x^{r}=g x^{r}$. Thus $g x^{1}=g^{2} x^{1} \in F\left(g x^{1}, g x^{2}, \ldots, g x^{r}\right), g x^{2}=g^{2} x^{2} \in F\left(g x^{2}, \ldots\right.$, $\left.g x^{r}, g x^{1}\right), \ldots, g x^{r}=g^{2} x^{r} \in F\left(g x^{r}, g x^{1}, \ldots, g x^{r-1}\right)$, that is, $\left(g x^{1}, g x^{2}, \ldots, g x^{r}\right)$ is a common r-tupled fixed point of F and g.

Suppose now that (c) holds. Assume that for some ($\left.x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and for some $y^{1}, y^{2}, \ldots, y^{r} \in X, \lim _{i \rightarrow \infty} g^{i} y^{1}=x^{1}, \lim _{i \rightarrow \infty} g^{i} y^{2}=x^{2}, \ldots, \lim _{i \rightarrow \infty} g^{i} y^{r}=$ x^{r}. Since g is continuous at $x^{1}, x^{2}, \ldots, x^{r}$. We have $g x^{1}=x^{1}, g x^{2}=x^{2}, \ldots, g x^{r}=x^{r}$. Since $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$, we obtain $x^{1}=g x^{1} \in F\left(x^{1}, x^{2}, \ldots, x^{r}\right), x^{2}=g x^{2} \in$ $F\left(x^{2}, \ldots, x^{r}, x^{1}\right), \ldots, x^{r}=g x^{r} \in F\left(x^{r}, x^{1}, \ldots, x^{r-1}\right)$, that is, $\left(x^{1}, x^{2}, \ldots, x^{r}\right)$ is a common r-tupled fixed point of F and g.

Finally, suppose that (d) holds. Let $g(C(F, g))=\left\{\left(x^{1}, x^{1}, \ldots, x^{1}\right)\right\}$. Then $\left\{x^{1}\right\}=$ $\left\{g x^{1}\right\}=F\left(x^{1}, x^{1}, \ldots, x^{1}\right)$. Hence $\left(x^{1}, x^{1}, \ldots, x^{1}\right)$ is an r-tupled fixed point of F and g.

Example 2.1. Suppose that $X=[0,1]$, equipped with the metric $d: X \times X \rightarrow[0$, $+\infty)$ defined as $d(x, y)=\max \{x, y\}$ and $d(x, x)=0$ for all $x, y \in X$. Let $F: X^{r} \rightarrow$ $K(X)$ be defined as

$$
F\left(x^{1}, x^{2}, \ldots, x^{r}\right)=\left\{\begin{array}{c}
\{0\}, \text { for } x^{1}, x^{2}, \ldots, x^{r}=1 \\
{\left[0, \frac{1}{4}\left(x^{1}\right)^{4}\right], \text { for } x^{1}, x^{2}, \ldots, x^{r} \in[0,1)}
\end{array}\right.
$$

and $g: X \rightarrow X$ be defined as

$$
g x=x^{2}, \text { for all } x \in X .
$$

Define $\varphi:[0, \infty) \rightarrow[0, \infty)$ by

$$
\varphi(t)=\left\{\begin{array}{c}
\ln (t+1), \text { for } t \neq 1 \\
\frac{3}{4}, \text { for } t=1,
\end{array}\right.
$$

and $\psi:[0, \infty) \rightarrow[0,1)$ by

$$
\psi(t)=\frac{\varphi(t)}{t}, \text { for all } t \geq 0
$$

Now, for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$ with $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in[0$, 1).

If $x^{1}=y^{1}$, then

$$
\begin{aligned}
H\left(F\left(x^{1}, \ldots, x^{r}\right), F\left(y^{1}, \ldots, y^{r}\right)\right) & =\frac{1}{4}\left(y^{1}\right)^{4} \\
& \leq \ln \left(\left(y^{1}\right)^{2}+1\right) \\
& \leq \ln \left(\max \left\{\left(x^{1}\right)^{2},\left(y^{1}\right)^{2}\right\}+1\right) \\
& \leq \ln \left(d\left(g x^{1}, g y^{1}\right)+1\right) \\
& \leq \ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \varphi\left(H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)\right) \\
= & \ln \left(H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)+1\right) \\
\leq & \ln \left(\ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)+1\right) \\
\leq & \frac{\ln \left(\ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)+1\right)}{\ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)} \\
& \times \ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right) \\
\leq & \psi\left(\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}\right)\right) \\
& \times \varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}\right) .
\end{aligned}
$$

But if $x^{1} \neq y^{1}$ and $x^{1}<y^{1}$, then

$$
\begin{aligned}
H\left(F\left(x^{1}, \ldots, x^{r}\right), F\left(y^{1}, \ldots, y^{r}\right)\right) & =\frac{1}{4}\left(y^{1}\right)^{4} \\
& \leq \ln \left(\left(y^{1}\right)^{2}+1\right) \\
& \leq \ln \left(\max \left\{\left(x^{1}\right)^{2},\left(y^{1}\right)^{2}\right\}+1\right) \\
& \leq \ln \left(d\left(g x^{1}, g y^{1}\right)+1\right) \\
& \leq \ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \varphi\left(H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)\right) \\
= & \ln \left(H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)+1\right) \\
\leq & \ln \left(\ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)+1\right) \\
\leq & \frac{\ln \left(\ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)+1\right)}{\ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)} \\
& \times \ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \psi\left(\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}\right)\right) \\
& \times \varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}\right)
\end{aligned}
$$

Similarly, we obtain the same result for $y^{1}<x^{1}$. Thus the contractive condition (2.1) is satisfied for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$ with $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}$, $\ldots, y^{r} \in[0,1)$. Again, for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$ with $x^{1}, x^{2}, \ldots, x^{r} \in[0$, 1) and $y^{1}, y^{2}, \ldots, y^{r}=1$, we have

$$
\begin{aligned}
H\left(F\left(x^{1}, \ldots, x^{r}\right), F\left(y^{1}, \ldots, y^{r}\right)\right) & =\frac{1}{4}\left(x^{1}\right)^{4} \\
& \leq \ln \left(\left(x^{1}\right)^{2}+1\right) \\
& \leq \ln \left(\max \left\{\left(x^{1}\right)^{2},\left(y^{1}\right)^{2}\right\}+1\right) \\
& \leq \ln \left(d\left(g x^{1}, g y^{1}\right)+1\right) \\
& \leq \ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \varphi\left(H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)\right) \\
= & \ln \left(H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)+1\right) \\
\leq & \ln \left(\ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)+1\right) \\
\leq & \frac{\ln \left(\ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)+1\right)}{\ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right)} \\
& \times \ln \left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}+1\right) \\
\leq & \psi\left(\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}\right)\right) \\
& \times \varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}\right) .
\end{aligned}
$$

Thus the contractive condition (2.1) is satisfied for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots$, $y^{r} \in X$ with $x^{1}, x^{2}, \ldots, x^{r} \in[0,1)$ and $y^{1}, y^{2}, \ldots, y^{r}=1$. Similarly, we can see that the contractive condition (2.1) is satisfied for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$ with $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r}=1$. Hence, the hybrid pair (F, g) satisfies the contractive condition (2.1), for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$. In addition, all the other conditions of Theorem 2.1 are satisfied and $z=(0,0, \ldots, 0)$ is a common r-tupled fixed point of hybrid pair (F, g). The function $F: X^{r} \rightarrow K(X)$ involved in this example is not continuous at the point $(1,1, \ldots, 1) \in X^{r}$.

Remark 2. 1. We improve, extend and generalize the results of Ciric et al. [4] in the sense that
(i) We prove our result for hybrid pair of mappings.
(ii) We prove n-tupled coincidence and common n-tupled fixed point theorem while Ciric et al. [4] proved coupled coincidence and common coupled fixed point theorems.
(iii) We prove our result in the framework of noncomplete metric space (X, d) and the product set X^{r} is not empowered with any order.
(iv) We prove our result without the assumption of continuity and mixed g monotone property for mapping $F: X^{r} \rightarrow K(X)$.
(v) The functions $\varphi:[0, \infty) \rightarrow[0, \infty)$ and $\psi:[0, \infty) \rightarrow[0,1)$ involved in our theorem and example are discontinuous.

If we put $g=I$ (the identity mapping) in Theorem 2.1, we get the following result:

Corollary 2.2. Let (X, d) be a complete metric space. Suppose $F: X^{r} \rightarrow K(X)$ is a mapping for which there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{aligned}
& \varphi\left(H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)\right) \\
\leq & \psi\left(\varphi\left(\max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{r}, y^{r}\right)\right\}\right)\right) \\
& \times \varphi\left(\max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{r}, y^{r}\right)\right\}\right),
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$. Then F has an r-tupled fixed point.
If we put $\psi(t)=1-\frac{\widetilde{\psi}(t)}{t}$ for all $t \geq 0$ in Theorem 2.1, then we get the following result:

Corollary 2.3. Let (X, d) be a metric space. Assume $F: X^{r} \rightarrow K(X)$ and $g: X \rightarrow X$ are two mappings for which there exist $\varphi \in \Phi$ and $\widetilde{\psi} \in \Psi$ such that

$$
\begin{aligned}
& \varphi\left(H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)\right) \\
\leq & \varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), d\left(g x^{2}, g y^{2}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}\right) \\
& -\widetilde{\psi}\left(\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), d\left(g x^{2}, g y^{2}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}\right)\right),
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$. Furthermore assume that $F\left(X^{r}\right) \subseteq g(X)$ and $g(X)$ is a complete subset of X. Then F and g have an r-tupled coincidence point. Moreover, F and g have a common r-tupled fixed point, if one of the following conditions holds.
(a) F and g are w-compatible. $\lim _{i \rightarrow \infty} g^{i} x^{1}=y^{1}, \lim _{i \rightarrow \infty} g^{i} x^{2}=y^{2}, \ldots, \lim _{i \rightarrow \infty} g^{i} x^{r}$ $=y^{r}$, for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and for some $y^{1}, y^{2}, \ldots, y^{r} \in X$ and g is continuous at $y^{1}, y^{2}, \ldots, y^{r}$.
(b) g is F-weakly commuting for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and $g x^{1}, g x^{2}$, ..., $g x^{r}$ are fixed points of g, that is, $g^{2} x^{1}=g x^{1}, g^{2} x^{2}=g x^{2}, \ldots, g^{2} x^{r}=g x^{r}$.
(c) g is continuous at $x^{1}, x^{2}, \ldots, x^{r} . \lim _{i \rightarrow \infty} g^{i} y^{1}=x^{1}, \lim _{i \rightarrow \infty} g^{i} y^{2}=x^{2}, \ldots$, $\lim _{i \rightarrow \infty} g^{i} y^{r}=x^{r}$ for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and for some y^{1}, y^{2}, \ldots, $y^{r} \in X$.
(d) $g(C(F, g))$ is a singleton subset of $C(F, g)$.

If we put $g=I$ (the identity mapping) in Corollary 2.3, we get the following result:

Corollary 2.4. Let (X, d) be a complete metric space. Suppose $F: X^{r} \rightarrow K(X)$ is a mapping for which there exist $\varphi \in \Phi$ and $\widetilde{\psi} \in \Psi$ such that

$$
\begin{aligned}
& \varphi\left(H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right)\right) \\
\leq & \varphi\left(\max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{r}, y^{r}\right)\right\}\right) \\
& -\widetilde{\psi}\left(\varphi\left(\max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{r}, y^{r}\right)\right\}\right)\right)
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$. Then F has an r-tupled fixed point.
If we put $\varphi(t)=2 t$ for all $t \geq 0$ in Theorem 2.1, then we get the following result:
Corollary 2.5. Let (X, d) be a metric space. Suppose $F: X^{r} \rightarrow K(X)$ and $g: X \rightarrow X$ are two mappings for which there exists $\psi \in \Psi$ such that

$$
\begin{aligned}
& H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right) \\
\leq & \psi\left(2 \max \left\{\begin{array}{c}
d\left(g x^{1}, g y^{1}\right), \\
d\left(g x^{2}, g y^{2}\right), \\
\ldots \\
d\left(g x^{r}, g y^{r}\right)
\end{array}\right\}\right) \max \left\{\begin{array}{c}
d\left(g x^{1}, g y^{1}\right), \\
d\left(g x^{2}, g y^{2}\right), \\
\ldots, \\
d\left(g x^{r}, g y^{r}\right)
\end{array}\right\},
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$. Furthermore assume that $F\left(X^{r}\right) \subseteq g(X)$ and $g(X)$ is a complete subset of X. Then F and g have an r-tupled coincidence point. Moreover, F and g have a common r-tupled fixed point, if one of the following conditions holds.
(a) F and g are w-compatible. $\lim _{i \rightarrow \infty} g^{i} x^{1}=y^{1}, \lim _{i \rightarrow \infty} g^{i} x^{2}=y^{2}, \ldots, \lim _{i \rightarrow \infty} g^{i} x^{r}$ $=y^{r}$, for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and for some $y^{1}, y^{2}, \ldots, y^{r} \in X$ and g is continuous at $y^{1}, y^{2}, \ldots, y^{r}$.
(b) g is F-weakly commuting for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and $g x^{1}, g x^{2}$, $\ldots, g x^{r}$ are fixed points of g, that is, $g^{2} x^{1}=g x^{1}, g^{2} x^{2}=g x^{2}, \ldots, g^{2} x^{r}=g x^{r}$.
(c) g is continuous at $x^{1}, x^{2}, \ldots, x^{r} . \lim _{i \rightarrow \infty} g^{i} y^{1}=x^{1}, \lim _{i \rightarrow \infty} g^{i} y^{2}=x^{2}, \ldots$, $\lim _{i \rightarrow \infty} g^{i} y^{r}=x^{r}$ for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and for some y^{1}, y^{2}, \ldots, $y^{r} \in X$.
(d) $g(C(F, g))$ is a singleton subset of $C(F, g)$.

If we put $g=I$ (the identity mapping) in Corollary 2.5, we get the following result:

Corollary 2.6. Let (X, d) be a complete metric space. Suppose $F: X^{r} \rightarrow K(X)$ is a mapping for which there exists $\psi \in \Psi$ such that

$$
\begin{aligned}
& H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right) \\
\leq & \psi\left(2 \max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{r}, y^{r}\right)\right\}\right) \\
& \times \max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{r}, y^{r}\right)\right\},
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$. Then F has an r-tupled fixed point.
If we put $\psi(t)=k$ for all $t \geq 0$ in Corollary 2.5, then we get the following result:
Corollary 2.7. Let (X, d) be a metric space. Assume $F: X^{r} \rightarrow K(X)$ and $g: X \rightarrow X$ are two mappings satisfying

$$
\begin{aligned}
& H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right) \\
\leq & k \max \left\{d\left(g x^{1}, g y^{1}\right), d\left(g x^{2}, g y^{2}\right), \ldots, d\left(g x^{r}, g y^{r}\right)\right\}
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$, where $0<k<1$. Furthermore assume that $F\left(X^{r}\right) \subseteq g(X)$ and $g(X)$ is a complete subset of X. Then F and g have an r-tupled coincidence point. Moreover, F and g have a common r-tupled fixed point, if one of the following conditions holds.
(a) F and g are w-compatible. $\lim _{i \rightarrow \infty} g^{i} x^{1}=y^{1}, \lim _{i \rightarrow \infty} g^{i} x^{2}=y^{2}, \ldots, \lim _{i \rightarrow \infty} g^{i} x^{r}$ $=y^{r}$, for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and for some $y^{1}, y^{2}, \ldots, y^{r} \in X$ and g is continuous at $y^{1}, y^{2}, \ldots, y^{r}$.
(b) g is F-weakly commuting for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and $g x^{1}, g x^{2}$, $\ldots, g x^{r}$ are fixed points of g, that is, $g^{2} x^{1}=g x^{1}, g^{2} x^{2}=g x^{2}, \ldots, g^{2} x^{r}=g x^{r}$.
(c) g is continuous at $x^{1}, x^{2}, \ldots, x^{r}$. $\lim _{i \rightarrow \infty} g^{i} y^{1}=x^{1}, \lim _{i \rightarrow \infty} g^{i} y^{2}=x^{2}, \ldots$, $\lim _{i \rightarrow \infty} g^{i} y^{r}=x^{r}$ for some $\left(x^{1}, x^{2}, \ldots, x^{r}\right) \in C(F, g)$ and for some y^{1}, y^{2}, \ldots, $y^{r} \in X$.
(d) $g(C(F, g))$ is a singleton subset of $C(F, g)$.

If we put $g=I$ (the identity mapping) in Corollary 2.7, we get the following result:

Corollary 2.8. Let (X, d) be a complete metric space. Assume $F: X^{r} \rightarrow K(X)$ is a mapping satisfying

$$
\begin{aligned}
& H\left(F\left(x^{1}, x^{2}, \ldots, x^{r}\right), F\left(y^{1}, y^{2}, \ldots, y^{r}\right)\right) \\
\leq & k \max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{r}, y^{r}\right)\right\}
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{r}, y^{1}, y^{2}, \ldots, y^{r} \in X$, where $0<k<1$. Then F has an $r-t u p l e d$ fixed point.

References

1. A. Amini-Harandi \& D. O'Regan: Fixed point theorems for set-valued contraction type mappings in metric spaces. Fixed Point Theory Appl. 2010, 7 (2010). Article ID 390183.
2. T.G. Bhaskar \& V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65 (2006), no. 7, 1379-1393.
3. S. Banach: Sur les Operations dans les Ensembles Abstraits et leur. Applications aux Equations Integrales, Fund. Math. 3 (1922), 133-181.
4. L. Ciric, B. Damjanovic, M. Jleli \& B. Samet: Coupled fixed point theorems for generalized Mizoguchi-Takahashi contractions with applications. Fixed Point Theory Appl. 2012, 51.
5. B. Deshpande: Common fixed point for set and single valued functions without continuity and compatibility. Math. Morav. 11 (2007), 27-38.
6. B. Deshpande \& S. Chouhan: Fixed points for two hybrid pairs of mappings satisfying some weaker conditions on noncomplete metric spaces. Southeast Asian Bull. Math. 35 (2011), 851-858.
7. B. Deshpande \& A. Handa: Common n-tupled fixed point for hybrid pair of mappings under new contractive condition. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), no. 3, 165-181.
8. B. Deshpande \& A. Handa, n-tupled coincidence and fixed point result for hybrid pair of mappings under generalized nonlinear contraction. Southeast Asian Bull. Math. 40 (2016), 655-670.
9. B. Deshpande \& R. Pathak. Fixed point theorems for noncompatible discontinuous hybrid pairs of mappings on 2 - metric spaces. Demonstr. Math. XLV 2012, no. 1, 143-154.
10. W.S. Du: Coupled fixed point theorems for nonlinear contractions satisfied MizoguchiTakahashi's condition in quasi ordered metric spaces. Fixed Point Theory Appl. 2010, 9 (2010) Article ID 876372.
11. J. Harjani, B. Lopez \& K. Sadarangani: Fixed point theorems for mixed monotone operators and applications to integral equations. Nonlinear Anal. 74 (2011), 1749-1760.
12. M. Imdad, A.H. Soliman, B.S. Choudhury \& P. Das: On n-tupled coincidence point results in metric spaces. Journal of Operators Volume 2013, Article ID 532867, 8 pages.
13. I. Kubiaczyk \& B. Deshpande: A common fixed point theorem for multivalued mappings through T-weak commutativity. Math. Morav. 10 (2006), 55-60.
14. I. Kubiaczyk \& B. Deshpande: Common fixed point of multivalued mappings without continuity. Fasc. Mathe. 37 (2007), no. 9, 19-26.
15. I. Kubiaczyk \& B. Deshpande: Noncompatibility, discontinuity in consideration of common fixed point of set and single valued mappings. Southeast Asian Bull. Math. 32 (2008), 467-474.
16. V. Lakshmikantham \& L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70 (2009), no. 12, 4341-4349.
17. J.T. Markin: Continuous dependence of fixed point sets. Proc. Amer. Math. Soc. 38 (1947), 545-547.
18. N. Mizoguchi \& W. Takahashi: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141 (1989), 177-188.
19. S.B. Nadler: Multivalued contraction mappings. Pacific J. Math. 30 (1969), 475-488.
20. J. Rodriguez-Lopez \& S. Romaguera: The Hausdorff fuzzy metric on compact sets. Fuzzy Sets Syst. 147 (2004), 273-283.
21. S. Sharma \& B. Deshpande. Fixed point theorems for set and single valued mappings without continuity and compatibility. Demonstr. Math. XL (2007), no. 3, 649-658.
22. S. Sharma \& B. Deshpande: Compatible multivalued mappings satisfying an implicit relation. Southeast Asian Bull. Math. 30 (2006), 535-540.
${ }^{\text {a Department of Mathematics, Govt. Arts and Science College, Ratlam (M. P.), India }}$
Email address: bhavnadeshpande@yahoo.com
${ }^{\mathrm{b}}$ Department of Mathematics, Govt. P. G. Arts and Science College, Ratlam (M. P.), India
Email address: amrishhanda83@gmail.com

[^0]: Received by the editors August 31, 2020. Accepted October 06, 2021. 2010 Mathematics Subject Classification. 47H10, 54H25.
 Key words and phrases. generalized Mizoguchi-Takahashi contraction, n-tupled fixed point, n-tupled coincidence point, w-compatibility, F-weakly commuting.

 * Corresponding author.

