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COMMON n-TUPLED FIXED POINT THEOREM UNDER

GENERALIZED MIZOGUCHI-TAKAHASHI CONTRACTION

FOR HYBRID PAIR OF MAPPINGS

Bhavana Deshpande a, ∗ and Amrish Handa b

Abstract. We establish a common n−tupled fixed point theorem for hybrid pair of
mappings under generalized Mizoguchi-Takahashi contraction. An example is given
to validate our results. We improve, extend and generalize several known results.

1. Introduction and Preliminaries

Let (X, d) be a metric space. We denote by 2X the class of all nonempty subsets

of X, by CL(X) the class of all nonempty closed subsets of X, by CB(X) the class

of all nonempty closed bounded subsets of X and by K(X) the class of all nonempty

compact subsets of X. A functional H : CL(X)× CL(X) → R+ ∪ {+∞} is said to

be the Pompeiu-Hausdorff generalized metric induced by d is given by

H(A, B) =

 max

{
sup
a∈A

D(a, B), sup
b∈B

D(b, A)

}
, if maximum exists,

+∞, otherwise,

for all A, B ∈ CL(X), where D(x, A) = inf
a∈A

d(x, a) denote the distance from x to

A ⊂ X. For simplicity, if x ∈ X, we denote g(x) by gx.

The existence of fixed points for various multivalued contractions and non-expansive

mappings has been studied by many authors under different conditions which was

initiated by Markin [17]. For details, we refer [1, 5, 6, 7, 8, 9, 13, 14, 15, 18, 19, 21,

22] and the reference therein to the readers. The theory of multivalued mappings

has application in control theory, convex optimization, differential inclusions and

economics.
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In [2], Gnana-Bhaskar and Lakshmikantham established some coupled fixed point

theorems and applied these results to study the existence and uniqueness of solution

for periodic boundary value problems. Lakshmikantham and Ciric [16] proved cou-

pled coincidence and common coupled fixed point theorems for nonlinear contractive

mappings in partially ordered complete metric spaces, extended and generalized the

results of Gnana-Bhaskar and Lakshmikantham [2].

Nadler [19] extended the famous Banach Contraction Principle [3] from single-

valued mapping to multi-valued mapping. Mizoguchi and Takahashi [18] proved the

following generalization of Nadler’s fixed point theorem for a weak contraction.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → CB(X) be a

multivalued mapping. Assume that

H(Tx, Ty) ≤ ψ(d(x, y))d(x, y),

for all x, y ∈ X, where ψ is a function from [0,∞) into [0, 1) satisfying lim sup
s→t+

ψ(s) <

1 for all t ≥ 0. Then T has a fixed point.

Amini-Harandi and O’Regan [1] obtained a generalization of Mizoguchi and Taka-

hashi’s fixed point theorem. Recently Ciric et al. [4] proved coupled fixed point the-

orems for mixed monotone mappings satisfying a generalized Mizoguchi-Takahashi’s

condition in the setting of ordered metric spaces. Main results of Ciric et al. [4]

extended and generalized the results of Gnana-Bhaskar and Lakshmikantham [2],

Du [10] and Harjani et al. [11].

Imdad et al. [12] introduced the concept of n-tupled fixed point, n-tupled coin-

cidence point and proved some n-tupled coincidence point and n-tupled fixed point

results for single valued mapping.

These concepts were extended by Deshpande and Handa [8] to multivalued map-

pings and obtained n-tupled coincidence point and common n-tupled fixed point

theorems involving hybrid pair of mappings under generalized Mizoguchi-Takahashi

contraction.

Definition 2.1 ([8]). Let X be a nonempty set, F : Xr → 2X and g be a self-

mapping on X. An element (x1, x2, ..., xr) ∈ Xr is called

(1) an r−tupled fixed point of F if x1 ∈ F (x1, x2, ..., xr), x2 ∈ F (x2, ..., xr, x1),

..., xr ∈ F (xr, x1, ..., xr−1).

(1) an r−tupled coincidence point of hybrid pair (F, g) if gx1 ∈ F (x1, x2, ..., xr),

gx2 ∈ F (x2, ..., xr, x1), ..., gxr ∈ F (xr, x1, ..., xr−1).
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(2) a common r−tupled fixed point of hybrid pair (F, g) if x1 = gx1 ∈ F (x1, x2,

..., xr), x2 = gx2 ∈ F (x2, ..., xr, x1), ..., xr = gxr ∈ F (xr, x1, ..., xr−1).

We denote the set of r−tupled coincidence points of mappings F and g by C(F,

g). Note that if (x1, x2, ..., xr) ∈ C(F, g), then (x2, ..., xr, x1), ..., (xr, x1, ..., xr−1)

are also in C(F, g).

Definition 2.2 ([8]). Let F : Xr → 2X be a multivalued mapping and g be a

self-mapping on X. The hybrid pair (F, g) is called w−compatible if gF (x1, x2, ...,

xr) ⊆ F (gx1, gx2, ..., gxr) whenever (x1, x2, ..., xr) ∈ C(F, g).

Definition 2.3 ([8]). Let F : Xr → 2X be a multivalued mapping and g be a

self-mapping on X. The mapping g is called F−weakly commuting at some point

(x1, x2, ..., xr) ∈ Xr if g2x1 ∈ F (gx1, gx2, ..., gxr), g2x2 ∈ F (gx2, ..., gxr, gx1), ...,

g2xr ∈ F (gxr, gx1, ..., gxr−1).

Lemma 2.1 ([20]).Let (X, d) be a metric space. Then, for each a ∈ X and B ∈
K(X), there is b0 ∈ B such that D(a, B) = d(a, b0), where D(a, B) = inf

b∈B
d(a, b).

In this paper, we establish a common n−tupled fixed point theorem for hybrid

pair of mappings under generalized Mizoguchi-Takahashi contraction. We improve,

extend and generalize the results of Amini-Harandi and O’Regan [1], Bhaskar and

Lakshmikantham [2], Ciric et al. [4], Du [10], Harjani et al. [11] and Mizoguchi and

Takahashi [18]. An example which demonstrates the effectiveness of our result has

also been cited.

2. Main Results

Let Φ denote the set of all functions φ : [0, ∞) → [0, ∞) satisfying
(iφ) φ is non-decreasing,
(iiφ) φ(t) = 0 ⇔ t = 0,

(iiiφ) lim
t→0+

t

φ(t)
<∞.

Let Ψ denote the set of all functions ψ : [0,∞) → [0, 1) which satisy lim
r→t+

ψ(r) < 1

for all t ≥ 0.

Theorem 2.1. Let (X, d) be a metric space. Suppose F : Xr → K(X) and

g : X → X are two mappings for which there exist φ ∈ Φ and ψ ∈ Ψ such that

φ(H(F (x1, x2, ..., xr), F (y1, y2, ..., yr)))(2.1)



4 Bhavana Deshpande & Amrish Handa

≤ ψ(φ(max
{
d(gx1, gy1), d(gx2, gy2), ..., d(gxr, gyr)

}
))

× φ(max{d(gx1, gy1), d(gx2, gy2), ..., d(gxr, gyr)}),

for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X. Furthermore assume that F (Xr) ⊆ g(X) and

g(X) is a complete subset of X. Then F and g have an r−tupled coincidence point.

Moreover, F and g have a common r−tupled fixed point, if one of the following

conditions holds.

(a) F and g are w−compatible. limi→∞ gix1 = y1, limi→∞ gix2 = y2, ..., limi→∞ gixr

= yr, for some (x1, x2, ..., xr) ∈ C(F, g) and for some y1, y2, ..., yr ∈ X and g is

continuous at y1, y2, ..., yr.

(b) g is F−weakly commuting for some (x1, x2, ..., xr) ∈ C(F, g) and gx1, gx2,

..., gxr are fixed points of g, that is, g2x1 = gx1, g2x2 = gx2, ..., g2xr = gxr.

(c) g is continuous at x1, x2, ..., xr. limi→∞ giy1 = x1, limi→∞ giy2 = x2, ...,

limi→∞ giyr = xr for some (x1, x2, ..., xr) ∈ C(F, g) and for some y1, y2, ...,

yr ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

Proof. Let x10, x
2
0, ..., x

r
0 ∈ X be arbitrary. Then F (x10, x

2
0, ..., x

r
0), F (x

2
0, ...,

xr0, x
1
0), ..., F (x

r
0, x

1
0, ..., x

r−1
0 ) are well defined. Choose gx11 ∈ F (x10, x

2
0, ..., x

r
0),

gx21 ∈ F (x20, ..., x
r
0, x

1
0), ..., gx

r
0 ∈ F (xr0, x

1
0, ..., x

r−1
0 ) because F (Xr) ⊆ g(X).

Since F : Xr → K(X), therefore by Lemma 2.1, there exist z1 ∈ F (x11, x
2
1, ..., x

r
1),

z2 ∈ F (x21, ..., x
r
1, x

1
1)..., z

r ∈ F (xr1, x
1
1, ..., x

r−1
1 ) such that

d(gx11, z
1) ≤ H(F (x10, x

2
0, ..., x

r
0), F (x

1
1, x

2
1, ..., x

r
1)),

d(gx21, z
2) ≤ H(F (x20, ..., x

r
0, x

1
0), F (x

2
1, ..., x

r
1, x

1
1)),

...,

d(gxr1, z
r) ≤ H(F (xr0, x

1
0, ..., x

r−1
0 ), F (xr1, x

1
1, ..., x

r−1
1 )).

Since F (Xr) ⊆ g(X), there exist x12, x
2
2, ..., x

r
2 ∈ X such that z1 = gx12, z

2 = gx22,

..., zr = gxr2. Thus

d(gx11, gx
1
2) ≤ H(F (x10, x

2
0, ..., x

r
0), F (x

1
1, x

2
1, ..., x

r
1)),

d(gx21, gx
2
2) ≤ H(F (x20, ..., x

r
0, x

1
0), F (x

2
1, ..., x

r
1, x

1
1)),

...,

d(gxr1, gx
r
2) ≤ H(F (xr0, x

1
0, ..., x

r−1
0 ), F (xr1, x

1
1, ..., x

r−1
1 )).
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Continuing this process, we obtain sequences {x1i } ⊂ X, {x2i } ⊂ X, ..., {xri } ⊂ X

such that for all i ∈ N, we have x1i+1 ∈ F (x1i , x
2
i , ..., x

r
i ), x

2
i+1 ∈ F (x2i , ..., x

r
i , x

1
i ),

..., xri+1 ∈ F (xri , x
1
i , ..., x

r−1
i ) such that

d(gx1i , gx
1
i+1) ≤ H(F (x1i−1, x

2
i−1, ..., x

r
i−1), F (x

1
i , x

2
i , ..., x

r
i )),

d(gx2i , gx
2
i+1) ≤ H(F (x2i−1, ..., x

r
i−1, x

1
i−1), F (x

2
i , ..., x

r
i , x

1
i )),

...,

d(gxri , gx
r
i+1) ≤ H(F (xri−1, x

1
i−1, ..., x

r−1
i−1 ), F (x

r
i , x

1
i , ..., x

r−1
i )),

which implies, by (iφ) and (2.1), we have

φ
(
d(gx1i , gx

1
i+1)

)
≤ φ

(
H(F (x1i−1, x

2
i−1, ..., x

r
i−1), F (x

1
i , x

2
i , ..., x

r
i ))

)
≤ ψ

(
φ(max

{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
)
)

×φ(max
{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
).

Thus

φ
(
d(gx1i , gx

1
i+1)

)
(2.2)

≤ ψ
(
φ(max

{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
)
)

× φ(max
{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
),

which, by the fact that ψ < 1, implies

φ
(
d(gx1i , gx

1
i+1)

)
≤ φ

(
max

{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ),

..., d(gxri−1, gx
r
i )

})
.

Similarly

φ
(
d(gx2i , gx

2
i+1)

)
≤ φ

(
max

{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ),

..., d(gxri−1, gx
r
i )

})
,

...,

φ
(
d(gxri , gx

r
i+1)

)
≤ φ

(
max

{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ),

..., d(gxri−1, gx
r
i )

})
,

Combining them, we get

max{φ
(
d(gx1i , gx

1
i+1)

)
, φ

(
d(gx2i , gx

2
i+1)

)
, ..., φ

(
d(gxri , gx

r
i+1)

)
}

≤ φ(max
{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
).
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Since φ is non-decreasing, it follows that

φ(max{d(gx1i , gx1i+1), d(gx
2
i , gx

2
i+1), ... d(gx

r
i , gx

r
i+1)})(2.3)

≤ φ(max
{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
),

for all i ≥ 0. Now (2.3) shows that {φ(max{d(gx1i , gx1i+1), d(gx
2
i , gx

2
i+1), ..., d(gx

r
i ,

gxri+1)})} is a non-increasing sequence. Thus there exists δ ≥ 0 such that

(2.4) lim
i→∞

φ(max{d(gx1i , gx1i+1), d(gx
2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)}) = δ.

Since ψ ∈ Ψ, we have limr→δ+ ψ(r) < 1 and ψ(δ) < 1. Then there exist α ∈ [0, 1)

and ε > 0 such that ψ(r) ≤ α for all r ∈ [δ, δ + ε). From (2.4), we can take i0 ≥ 0

such that δ ≤ φ(max{d(gx1i , gx1i+1), d(gx
2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)}) ≤ δ + ε for

all i ≥ i0. Then from (2.1), for all i ≥ i0, we have

φ
(
d(gx1i , gx

1
i+1)

)
≤ ψ

(
φ(max

{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
)
)

×φ(max
{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
)

≤ αφ(max
{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
).

Thus

φ
(
d(gx1i , gx

1
i+1)

)
≤ αφ

(
max

{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ),

..., d(gxri−1, gx
r
i )

})
.

Similarly, for all i ≥ i0, we have

φ
(
d(gx2i , gx

2
i+1)

)
≤ αφ

(
max

{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ),

..., d(gxri−1, gx
r
i )

})
,

...,

φ
(
d(gxri , gx

r
i+1)

)
≤ αφ

(
max

{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ),

..., d(gxri−1, gx
r
i )

})
.

Combining them, we get

max
{
φ
(
d(gx1i , gx

1
i+1)

)
, φ

(
d(gx2i , gx

2
i+1)

)
, ..., φ

(
d(gxri , gx

r
i+1)

)}
≤ αφ(max

{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
).

Since φ is non-decreasing, it follows that

φ(max
{
d(gx1i , gx

1
i+1), d(gx

2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)

}
)(2.5)

≤ αφ(max
{
d(gx1i−1, gx

1
i ), d(gx

2
i−1, gx

2
i ), ..., d(gx

r
i−1, gx

r
i )
}
),
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for all i ≥ i0. Letting i → ∞ in (2.5) and using (2.4), we obtain that δ ≤ αδ. Since

α ∈ [0, 1), therefore δ = 0. Thus

(2.6) lim
n→∞

φ(max
{
d(gx1i , gx

1
i+1), d(gx

2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)

}
) = 0.

Since {φ(max{d(gx1i , gx1i+1), d(gx
2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)})} is a non-increasing

sequence and φ is non-decreasing, {max{d(gx1i , gx1i+1), d(gx
2
i , gx

2
i+1), ..., d(gx

r
i ,

gxri+1)}} is also a non-increasing sequence of positive numbers. Thus there exists

θ ≥ 0 such that

lim
n→∞

max
{
d(gx1i , gx

1
i+1), d(gx

2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)

}
= θ.

Since φ is non-decreasing, we have

(2.7) φ(max
{
d(gx1i , gx

1
i+1), d(gx

2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)

}
) ≥ φ(θ).

Letting n → ∞ in (2.7), by using (2.6), we get 0 ≥ φ(θ) which implies, by (iiφ),

that θ = 0. Thus

(2.8) lim
n→∞

max
{
d(gx1i , gx

1
i+1), d(gx

2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)

}
= 0.

Suppose that max{d(gx1i , gx1i+1), d(gx
2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)} = 0 for some

i ≥ 0. Then, we have d(gx1i , gx
1
i+1) = 0, d(gx2i , gx

2
i+1) = 0, ..., d(gxri , gx

r
i+1) = 0

which implies that gx1i = gx1i+1 ∈ F (x1i , x
2
i , ..., x

r
i ), gx

2
i = gx2i+1 ∈ F (x2i , ..., x

r
i ,

x1i ), ..., gx
r
i = gxri+1 ∈ F (xri , x

1
i , ..., x

r−1
i ), that is, (x1i , x

2
i , ..., x

r
i ) is an r−tupled

coincidence point of F and g. Now, suppose that

max
{
d(gx1i , gx

1
i+1), d(gx

2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)

}
̸= 0, for all i ≥ 0.

Suppose ai = φ(max
{
d(gx1i , gx

1
i+1), d(gx

2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)

}
), for all i ≥

0. From (2.5), we have ai ≤ αai−1 for all i ≥ i0. Then, we have

(2.9)

∞∑
i=0

ai ≤
i0∑
i=0

ai +
∞∑

i=i0+1

αi−i0ai0 <∞.

On the other hand, by (iiiφ), we have

(2.10) lim
i→∞

max
{
d(gx1i , gx

1
i+1), d(gx

2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)

}
φ(max

{
d(gx1i , gx

1
i+1), d(gx

2
i , gx

2
i+1), ..., d(gx

r
i , gx

r
i+1)

}
)
<∞.

Thus, by (2.9) and (2.10), we have
∑

max{d(gx1i , gx1i+1), d(gx
2
i , gx

2
i+1), ..., d(gx

r
i ,

gxri+1)} <∞. It means that {gx1i }∞i=0, {gx2i }∞i=0, ..., {gxri }∞i=0 are Cauchy sequences
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in g(X). Since g(X) is complete, this implies that there exist x1, x2, ..., xr ∈ X such

that

(2.11) lim
i→∞

gx1i = gx1, lim
i→∞

gx2i = gx2, ..., lim
i→∞

gxri = gxr.

Now, since gx1i+1 ∈ F (x1i , x
2
i , ..., x

r
i ), gx

2
i+1 ∈ F (x2i , ..., x

r
i , x

1
i ), ..., gx

r
i+1 ∈ F (xri ,

x1i , ..., x
r−1
i ), by using condition (2.1), we get

φ
(
D(gx1i+1, F (x

1, x2, ..., xr))
)

≤ φ
(
H(F (x1i , x

2
i , ..., x

r
i ), F (x

1, x2, ..., xr))
)

≤ ψ
(
φ(max

{
d(gx1i , gx

1), d(gx2i , gx
2), ..., d(gxri , gx

r)
}
)
)

×φ(max
{
d(gx1i , gx

1), d(gx2i , gx
2), ..., d(gxri , gx

r)
}
),

which, by the fact that ψ < 1, implies

φ
(
D(gx1i+1, F (x

1, x2, ..., xr))
)

≤ φ(max
{
d(gx1i , gx

1), d(gx2i , gx
2), ..., d(gxri , gx

r)
}
).

Since φ is non-decreasing, we have

D(gx1i+1, F (x
1, x2, ..., xr))(2.12)

≤ max
{
d(gx1i , gx

1), d(gx2i , gx
2), ..., d(gxri , gx

r)
}
.

Letting n→ ∞ in (2.12), by using (2.11), we obtain

D(gx1, F (x1, x2, ..., xr)) = 0.

Similarly, we can get

D(gx2, F (x2, ..., xr, x1)) = 0, ..., D(gxr, F (xr, x1, ..., xr−1)) = 0,

which implies that

gx1 ∈ F (x1, x2, ..., xr),

gx2 ∈ F (x2, ..., xr, x1),

..., gxr ∈ F (xr, x1, ..., xr−1),

that is, (x1, x2, ..., xr) is an r−tupled coincidence point of F and g.

Suppose now that (a) holds. Assume that for some (x1, x2, ..., xr) ∈ C(F, g),

(2.13) lim
i→∞

gix1 = y1, lim
i→∞

gix2 = y2, ..., lim
i→∞

gixr = yr,

where y1, y2, ..., yr ∈ X. Since g is continuous at y1, y2, ..., yr. We have

(2.14) gy1 = y1, gy2 = y2, ..., gyr = yr.
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As F and g are w−compatible, so, for all i ≥ 1,

gix1 ∈ F (gi−1x1, gi−1x2, ..., gi−1xr),

gix2 ∈ F (gi−1x2, ..., gi−1xr, gi−1x1),(2.15)

..., gixr ∈ F (gi−1xr, gi−1x1, ..., gi−1xr−1).

Now, by using (2.1) and (2.15), we obtain

φ
(
D(gix1, F (y1, y2, ..., yr))

)
≤ φ

(
H(F (gi−1x1, gi−1x2, ..., gi−1xr), F (y1, y2, ..., yr))

)
≤ ψ

(
φ(max

{
d(gix1, gy1), d(gix2, gy2), ..., d(gixr, gyr)

}
)
)

×φ(max
{
d(gix1, gy1), d(gix2, gy2), ..., d(gixr, gyr)

}
),

which implies, by (iφ) and (2.1), we have

φ
(
D(gix1, F (y1, y2, ..., yr))

)
≤ φ(max

{
d(gix1, gy1), d(gix2, gy2), ..., d(gixr, gyr)

}
).

Since φ is non-decreasing, we have

D(gix1, F (y1, y2, ..., yr))(2.16)

≤ max
{
d(gix1, gy1), d(gix2, gy2), ..., d(gixr, gyr)

}
.

On taking limit as n→ ∞ in (2.16), by using (2.13) and (2.14), we get

D(gy1, F (y1, y2, ..., yr)) = 0.

Similarly, we can get

D(gy2, F (y2, ..., yr, y1)) = 0, ..., D(gyr, F (yr, y1, ..., yr−1)) = 0,

which implies that

gy1 ∈ F (y1, y2, ..., yr),

gy2 ∈ F (y2, ..., yr, y1),

..., gyr ∈ F (yr, y1, ..., yr−1).

Now, by (2.14), we have

y1 = gy1 ∈ F (y1, y2, ..., yr),

y2 = gy2 ∈ F (y2, ..., yr, y1),

..., yr = gyr ∈ F (yr, y1, ..., yr−1),

that is, (y1, y2, ..., yr) is a common r−tupled fixed point of F and g.
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Suppose now that (b) holds. Assume that for some (x1, x2, ..., xr) ∈ C(F, g),

g is F−weakly commuting, that is, g2x1 ∈ F (gx1, gx2, ..., gxr), g2x2 ∈ F (gx2,

..., gxr, gx1), ..., g2xr ∈ F (gxr, gx1, ..., gxr−1) and g2x1 = gx1, g2x2 = gx2, ...,

g2xr = gxr. Thus gx1 = g2x1 ∈ F (gx1, gx2, ..., gxr), gx2 = g2x2 ∈ F (gx2, ...,

gxr, gx1), ..., gxr = g2xr ∈ F (gxr, gx1, ..., gxr−1), that is, (gx1, gx2, ..., gxr) is a

common r−tupled fixed point of F and g.

Suppose now that (c) holds. Assume that for some (x1, x2, ..., xr) ∈ C(F, g) and

for some y1, y2, ..., yr ∈ X, limi→∞ giy1 = x1, limi→∞ giy2 = x2, ..., limi→∞ giyr =

xr. Since g is continuous at x1, x2, ..., xr.We have gx1 = x1, gx2 = x2, ..., gxr = xr.

Since (x1, x2, ..., xr) ∈ C(F, g), we obtain x1 = gx1 ∈ F (x1, x2, ..., xr), x2 = gx2 ∈
F (x2, ..., xr, x1), ..., xr = gxr ∈ F (xr, x1, ..., xr−1), that is, (x1, x2, ..., xr) is a

common r−tupled fixed point of F and g.

Finally, suppose that (d) holds. Let g(C(F, g)) = {(x1, x1, ..., x1)}. Then {x1} =

{gx1} = F (x1, x1, ..., x1). Hence (x1, x1, ..., x1) is an r−tupled fixed point of F

and g. �

Example 2.1. Suppose that X = [0, 1], equipped with the metric d : X ×X → [0,

+∞) defined as d(x, y) = max{x, y} and d(x, x) = 0 for all x, y ∈ X. Let F : Xr →
K(X) be defined as

F (x1, x2, ..., xr) =

 {0}, for x1, x2, ..., xr = 1[
0,

1

4
(x1)4

]
, for x1, x2, ..., xr ∈ [0, 1)

and g : X → X be defined as

gx = x2, for all x ∈ X.

Define φ : [0, ∞) → [0, ∞) by

φ(t) =

{
ln(t+ 1), for t ̸= 1

3

4
, for t = 1,

and ψ : [0, ∞) → [0, 1) by

ψ(t) =
φ(t)

t
, for all t ≥ 0.

Now, for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X with x1, x2, ..., xr, y1, y2, ..., yr ∈ [0,

1).
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If x1 = y1, then

H(F (x1, ..., xr), F (y1, ..., yr)) =
1

4
(y1)4

≤ ln((y1)2 + 1)

≤ ln(max{(x1)2, (y1)2}+ 1)

≤ ln(d(gx1, gy1) + 1)

≤ ln(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1),

which implies that

φ
(
H(F (x1, x2, ..., xr), F (y1, y2, ..., yr))

)
= ln(H(F (x1, x2, ..., xr), F (y1, y2, ..., yr)) + 1)

≤ ln(ln(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1) + 1)

≤
ln(ln(max

{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1) + 1)

ln(max {d(gx1, gy1), ..., d(gxr, gyr)}+ 1)

× ln(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1)

≤ ψ
(
φ(max

{
d(gx1, gy1), ..., d(gxr, gyr)

}
)
)

×φ(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
).

But if x1 ̸= y1 and x1 < y1, then

H(F (x1, ..., xr), F (y1, ..., yr)) =
1

4
(y1)4

≤ ln((y1)2 + 1)

≤ ln(max{(x1)2, (y1)2}+ 1)

≤ ln(d(gx1, gy1) + 1)

≤ ln(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1),

which implies that

φ
(
H(F (x1, x2, ..., xr), F (y1, y2, ..., yr))

)
= ln(H(F (x1, x2, ..., xr), F (y1, y2, ..., yr)) + 1)

≤ ln(ln(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1) + 1)

≤
ln(ln(max

{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1) + 1)

ln(max {d(gx1, gy1), ..., d(gxr, gyr)}+ 1)

× ln(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1)
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≤ ψ
(
φ(max

{
d(gx1, gy1), ..., d(gxr, gyr)

}
)
)

×φ(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
).

Similarly, we obtain the same result for y1 < x1. Thus the contractive condition

(2.1) is satisfied for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X with x1, x2, ..., xr, y1, y2,

..., yr ∈ [0, 1). Again, for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X with x1, x2, ..., xr ∈ [0,

1) and y1, y2, ..., yr = 1, we have

H(F (x1, ..., xr), F (y1, ..., yr)) =
1

4
(x1)4

≤ ln((x1)2 + 1)

≤ ln(max{(x1)2, (y1)2}+ 1)

≤ ln(d(gx1, gy1) + 1)

≤ ln(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1),

which implies that

φ
(
H(F (x1, x2, ..., xr), F (y1, y2, ..., yr))

)
= ln(H(F (x1, x2, ..., xr), F (y1, y2, ..., yr)) + 1)

≤ ln(ln(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1) + 1)

≤
ln(ln(max

{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1) + 1)

ln(max {d(gx1, gy1), ..., d(gxr, gyr)}+ 1)

× ln(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
+ 1)

≤ ψ
(
φ(max

{
d(gx1, gy1), ..., d(gxr, gyr)

}
)
)

×φ(max
{
d(gx1, gy1), ..., d(gxr, gyr)

}
).

Thus the contractive condition (2.1) is satisfied for all x1, x2, ..., xr, y1, y2, ...,

yr ∈ X with x1, x2, ..., xr ∈ [0, 1) and y1, y2, ..., yr = 1. Similarly, we can see that

the contractive condition (2.1) is satisfied for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X

with x1, x2, ..., xr, y1, y2, ..., yr = 1. Hence, the hybrid pair (F, g) satisfies the

contractive condition (2.1), for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X. In addition, all

the other conditions of Theorem 2.1 are satisfied and z = (0, 0, ..., 0) is a common

r−tupled fixed point of hybrid pair (F, g). The function F : Xr → K(X) involved

in this example is not continuous at the point (1, 1, ..., 1) ∈ Xr.

Remark 2. 1. We improve, extend and generalize the results of Ciric et al. [4] in

the sense that
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(i) We prove our result for hybrid pair of mappings.

(ii) We prove n−tupled coincidence and common n−tupled fixed point theorem

while Ciric et al. [4] proved coupled coincidence and common coupled fixed point

theorems.

(iii) We prove our result in the framework of noncomplete metric space (X, d)

and the product set Xr is not empowered with any order.

(iv) We prove our result without the assumption of continuity and mixed g-

monotone property for mapping F : Xr → K(X).

(v) The functions φ : [0, ∞) → [0, ∞) and ψ : [0, ∞) → [0, 1) involved in our

theorem and example are discontinuous.

If we put g = I (the identity mapping) in Theorem 2.1, we get the following

result:

Corollary 2.2. Let (X, d) be a complete metric space. Suppose F : Xr → K(X) is

a mapping for which there exist φ ∈ Φ and ψ ∈ Ψ such that

φ
(
H(F (x1, x2, ..., xr), F (y1, y2, ..., yr))

)
≤ ψ

(
φ(max

{
d(x1, y1), d(x2, y2), ..., d(xr, yr)

}
)
)

×φ(max
{
d(x1, y1), d(x2, y2), ..., d(xr, yr)

}
),

for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X. Then F has an r−tupled fixed point.

If we put ψ(t) = 1− ψ̃(t)

t
for all t ≥ 0 in Theorem 2.1, then we get the following

result:

Corollary 2.3. Let (X, d) be a metric space. Assume F : Xr → K(X) and

g : X → X are two mappings for which there exist φ ∈ Φ and ψ̃ ∈ Ψ such that

φ
(
H(F (x1, x2, ..., xr), F (y1, y2, ..., yr))

)
≤ φ(max

{
d(gx1, gy1), d(gx2, gy2), ..., d(gxr, gyr)

}
)

−ψ̃
(
φ(max

{
d(gx1, gy1), d(gx2, gy2), ..., d(gxr, gyr)

}
)
)
,

for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X. Furthermore assume that F (Xr) ⊆ g(X) and

g(X) is a complete subset of X. Then F and g have an r−tupled coincidence point.

Moreover, F and g have a common r−tupled fixed point, if one of the following

conditions holds.
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(a) F and g are w−compatible. limi→∞ gix1 = y1, limi→∞ gix2 = y2, ..., limi→∞g
ixr

= yr, for some (x1, x2, ..., xr) ∈ C(F, g) and for some y1, y2, ..., yr ∈ X and g is

continuous at y1, y2, ..., yr.

(b) g is F−weakly commuting for some (x1, x2, ..., xr) ∈ C(F, g) and gx1, gx2,

..., gxr are fixed points of g, that is, g2x1 = gx1, g2x2 = gx2, ..., g2xr = gxr.

(c) g is continuous at x1, x2, ..., xr. limi→∞ giy1 = x1, limi→∞ giy2 = x2, ...,

limi→∞ giyr = xr for some (x1, x2, ..., xr) ∈ C(F, g) and for some y1, y2, ...,

yr ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

If we put g = I (the identity mapping) in Corollary 2.3, we get the following

result:

Corollary 2.4. Let (X, d) be a complete metric space. Suppose F : Xr → K(X) is

a mapping for which there exist φ ∈ Φ and ψ̃ ∈ Ψ such that

φ
(
H(F (x1, x2, ..., xr), F (y1, y2, ..., yr))

)
≤ φ(max

{
d(x1, y1), d(x2, y2), ..., d(xr, yr)

}
)

−ψ̃
(
φ(max

{
d(x1, y1), d(x2, y2), ..., d(xr, yr)

}
)
)
,

for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X. Then F has an r−tupled fixed point.

If we put φ(t) = 2t for all t ≥ 0 in Theorem 2.1, then we get the following result:

Corollary 2.5. Let (X, d) be a metric space. Suppose F : Xr → K(X) and

g : X → X are two mappings for which there exists ψ ∈ Ψ such that

H(F (x1, x2, ..., xr), F (y1, y2, ..., yr))

≤ ψ

2max


d(gx1, gy1),
d(gx2, gy2),

...,
d(gxr, gyr)


max


d(gx1, gy1),
d(gx2, gy2),

...,
d(gxr, gyr)

 ,

for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X. Furthermore assume that F (Xr) ⊆ g(X) and

g(X) is a complete subset of X. Then F and g have an r−tupled coincidence point.

Moreover, F and g have a common r−tupled fixed point, if one of the following

conditions holds.

(a) F and g are w−compatible. limi→∞ gix1 = y1, limi→∞ gix2 = y2, ..., limi→∞g
ixr

= yr, for some (x1, x2, ..., xr) ∈ C(F, g) and for some y1, y2, ..., yr ∈ X and g is

continuous at y1, y2, ..., yr.
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(b) g is F−weakly commuting for some (x1, x2, ..., xr) ∈ C(F, g) and gx1, gx2,

..., gxr are fixed points of g, that is, g2x1 = gx1, g2x2 = gx2, ..., g2xr = gxr.

(c) g is continuous at x1, x2, ..., xr. limi→∞ giy1 = x1, limi→∞ giy2 = x2, ...,

limi→∞ giyr = xr for some (x1, x2, ..., xr) ∈ C(F, g) and for some y1, y2, ...,

yr ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

If we put g = I (the identity mapping) in Corollary 2.5, we get the following

result:

Corollary 2.6. Let (X, d) be a complete metric space. Suppose F : Xr → K(X) is

a mapping for which there exists ψ ∈ Ψ such that

H(F (x1, x2, ..., xr), F (y1, y2, ..., yr))

≤ ψ
(
2max

{
d(x1, y1), d(x2, y2), ..., d(xr, yr)

})
×max

{
d(x1, y1), d(x2, y2), ..., d(xr, yr)

}
,

for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X. Then F has an r−tupled fixed point.

If we put ψ(t) = k for all t ≥ 0 in Corollary 2.5, then we get the following result:

Corollary 2.7. Let (X, d) be a metric space. Assume F : Xr → K(X) and

g : X → X are two mappings satisfying

H(F (x1, x2, ..., xr), F (y1, y2, ..., yr))

≤ kmax
{
d(gx1, gy1), d(gx2, gy2), ..., d(gxr, gyr)

}
,

for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X, where 0 < k < 1. Furthermore assume that

F (Xr) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have an r−tupled

coincidence point. Moreover, F and g have a common r−tupled fixed point, if one

of the following conditions holds.

(a) F and g are w−compatible. limi→∞ gix1 = y1, limi→∞ gix2 = y2, ..., limi→∞ gixr

= yr, for some (x1, x2, ..., xr) ∈ C(F, g) and for some y1, y2, ..., yr ∈ X and g is

continuous at y1, y2, ..., yr.

(b) g is F−weakly commuting for some (x1, x2, ..., xr) ∈ C(F, g) and gx1, gx2,

..., gxr are fixed points of g, that is, g2x1 = gx1, g2x2 = gx2, ..., g2xr = gxr.

(c) g is continuous at x1, x2, ..., xr. limi→∞ giy1 = x1, limi→∞ giy2 = x2, ...,

limi→∞ giyr = xr for some (x1, x2, ..., xr) ∈ C(F, g) and for some y1, y2, ...,

yr ∈ X.
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(d) g(C(F, g)) is a singleton subset of C(F, g).

If we put g = I (the identity mapping) in Corollary 2.7, we get the following

result:

Corollary 2.8. Let (X, d) be a complete metric space. Assume F : Xr → K(X) is

a mapping satisfying

H(F (x1, x2, ..., xr), F (y1, y2, ..., yr))

≤ kmax
{
d(x1, y1), d(x2, y2), ..., d(xr, yr)

}
,

for all x1, x2, ..., xr, y1, y2, ..., yr ∈ X, where 0 < k < 1. Then F has an r−tupled

fixed point.
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