DOI QR코드

DOI QR Code

Evaluation on the Discontinuity Characteristics and Rock Quality Designations of the Rock Mass around KURT

KURT 주변 암반에 대한 불연속면 분포와 암질지수 평가

  • Received : 2022.12.07
  • Accepted : 2022.12.13
  • Published : 2022.12.31

Abstract

The safety of the disposal repository for high level radioactive waste should be guaranteed for a quite long period so that the precise evaluations are required. The site characteristics of the discontinuities are essential part of the safe repository design including engineered barrier and natural barrier systems. The discontinuities act like weak planes and at the same time, they act as flow paths so that their features should be investigated thoroughly. RQD (Rock Quality Designation) is one of the most widely applied characterizing methods due to its simplicity, however, modified designations have been proposed because RQD has some drawbacks, such as its directivity and dependence on the threshold length. This study aims to evaluate the applicability of the modified designations by applying them to the rock mass around KURT and to produce fundamental database that will be utilized in future studies.

불연속면 분포, 수정 암질 지수 KURT, 적용성 평가방사성폐기물처분장은 장기간에 걸쳐 그 안전성이 보장되어야 하며, 따라서 정밀한 수준의 안정성 평가가 수행되어야 한다. 처분장 부지의 불연속면 특성 평가는 공학적방벽과 천연방벽을 포함한 처분장의 안전한 설계에 있어 매우 중요한 요소이다. 암반 불연속면은 역학적으로는 연약면으로 작용하며 수리적으로는 지하수 유동의 통로가 되기 때문에 그 분포와 특성에 대한 정밀한 조사가 요구된다. 다양한 불연속면 특성화 방안 중 암질지수(RQD)는 그 편이성으로 인해 널리 적용되어왔으나, 방향성이 있고, 측정 기준 길이의 영향을 받는 등 적용상의 한계가 있기 때문에, 이를 보완한 형태의 수정 암질지수들이 제안되어왔다. 본 논문은 KURT 주변 암반의 불연속면 정보를 활용하여 수정 암질지수들의 적용성을 평가하고, 동시에 해당 암반의 불연속면 특성을 평가하여 향후 연구에 활용할 수 있는 기반자료를 생성하기 위해 작성되었다.

Keywords

Acknowledgement

본 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 고준위폐기물관리차세대혁신기술개발사업의 지원(2021M2E3A2041312)을 받아 수행된 연구사업입니다.

References

  1. ASTM, 2008, Standard test method for determining rock quality designation (RQD) of rock core. ASTM D6032-08, ASTM International, PA, USA.
  2. Bandis, S., Lumsden, A., and Barton, N., 1983, Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), 249-268. https://doi.org/10.1016/0148-9062(83)90595-8
  3. Barton, N., Lien, R., and Lunde, J., 1974, Engineering classification of jointed rock masses for the design of tunnel support. Rock Mechanics, 6, 189-236.
  4. Bieniawski, Z.T., 1984, Rock mechanics design in mining and tunneling. A.A. Balkema, Rotterdam.
  5. Deere, D.U., 1963, Technical description of rock cores for engineering purposes. 13th Colloquium, International Society for Rock Mechanics, Salzburg, Austria, 16-22.
  6. Gardner, W.S., 1987, Design of drilled piers in the Atlantic Piedmont. In: Smith R.W. editor. Foundations and excavations in decomposed rock of the Piedmont province. New York. ASCE.
  7. Haftani, M., Chehreh, H.A., Mehinrad, A., and Binazadeh, K., 2016, Practical investigation on use of weighted joint density to decrease the limitations of RQD measurements. Rock Mechanics and Rock Engineering, 49, 1551-1558. https://doi.org/10.1007/s00603-015-0788-9
  8. Harrison, J.P., 1999, Selection of the threshold value in RQD assessments. International Journal of Rock Mechanics and Mining Sciences, 36, 673-685. https://doi.org/10.1016/S0148-9062(99)00035-2
  9. Hong, S., Kwon, S., Min, K.B., and Ji, S.H., 2021, Effect of excavation and thermal stress on slip zone and aperture change around disposal hole and tunnel in fractured rock. Tunnel and Underground Space, 31(2), 125-144. https://doi.org/10.7474/TUS.2021.31.2.125
  10. KAERI, 2010, Fracture zones in deep borehole (DB-01) in KURT. KAERI/TR-4010/2010, KAERI, Deajeon, Korea.
  11. KAERI, 2017, Fracture distribution characteristics in KURT facility site. KAERI/TR-6981/2017, KAERI, Deajeon, Korea.
  12. KAERI, 2021, Lithological analysis of DB-2 borehole around KURT with depth. KAERI/TR-9012/2021, KAERI, Deajeon, Korea.
  13. KIGAM, 2019, Development of nationwide geoenvironmental maps for HLW geological disposal. GP2017-009-2019, KIGAM, Daejeon, Korea.
  14. Ku, C.Y., Hsu, S.M., Chiou, L.B., and Lin, G.F., 2009, An empirical model for estimating hydraulic conductivity of highly disturbed clastic sedimentary rocks in Taiwan. Engineering Geology, 109(3-4), 213-223. https://doi.org/10.1016/j.enggeo.2009.08.008
  15. Kulhawy, F.H. and Goodman, R.E., 1987, Foundations in rock. In: Bell F.G. editor. Ground Engineer's reference book. Butterworths, London.
  16. Lee, H., 1999, A study for the mechanical and hydraulic behavior of rock joints under cyclic shear loading. Seoul National University, Doctoral dissertation.
  17. Lee, C., Yoon, S., Cho, W.J., Jo, Y., Lee, S., Jeon, S., and Kim, G.Y., 2019, Study on thermal, hydraulic, and mechanical properties of KURT granite and Gyeongju bentonite, Journal of Nuclear Fuel Cycle and Waste Technology, 17, 65-80. https://doi.org/10.7733/jnfcwt.2019.17.s.65
  18. Palmstrom, A., 2005, Measurements of and correlations between block size and rock quality designation(RQD). Tunnelling and Underground Space Technology, 20, 362-377. https://doi.org/10.1016/j.tust.2005.01.005
  19. Priest, S.D., 1993, Discontinuity analysis for rock engineering. Chapman & Hill, London, UK.
  20. Priest, S.D., and Hudson, J.A., 1976, Discontinuity spacings in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(8), 135-148. https://doi.org/10.1016/0148-9062(76)90818-4
  21. Qureshi, M.U., Khan, K.M., Bessaih, N., Al-Mawali, K., and Al-Sadrani, K., 2014, An empirical relationship between in-situ permeability and RQD of discontinuous sedimentary rocks. Electronic Journal of Geotechnical Engineering, 19, 4781-4790.
  22. Sen, Z., 1990, Cumulative core index for rock quality evaluations. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27(2), 87-94. https://doi.org/10.1016/0148-9062(90)94857-P
  23. Singh, B., Goel, R.K., Mehrotra, V.K., Garg, S.K., and Allu, M.R., 1998, Effect of intermediate principal stress on strength of anisotropic rock mass. Tunnelling and Underground Space Technology, 13(1), 71-79. https://doi.org/10.1016/S0886-7798(98)00023-6
  24. SKB, 1998, Parameters of importance to determine during geoscientific site investigation. TR-98-02, SKB, Stockholm, Sweden.
  25. Sonmez, H., Ercanoglu, M., and Dagdelenler, G., 2022, A novel approach to structural anisotropy classification for jointed rock masses using theoretical rock quality designation formulation adjusted to joint spacing. Journal of Rock Mechanics and Geotechnical Engineering, 14, 329-345. https://doi.org/10.1016/j.jrmge.2021.08.009
  26. Zhang, L., and Einstein, H.H., 2004, Using RQD to estimate the deformation modulus of rock masses. International Journal of Rock Mechanics and Mining Sciences, 41(2), 337-341. https://doi.org/10.1016/S1365-1609(03)00100-X
  27. Zheng, J., Yang, X., Lu, Q., Zhao, Y., Deng, J., and Ding, Z., 2018, A new perspective for the directivity of rock quality designation(RQD) and an anisotropic index for jointing degree for rock masses. Engineering Geology, 240, 81-94. https://doi.org/10.1016/j.enggeo.2018.04.013
  28. Zimmerman, R., and Bodvarsson G., 1996, Hydraulic conductivity of rock fractures, Transport in Porous Media, 23(1), 1-30. https://doi.org/10.1007/BF00145263