과제정보
This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (No. 2021M2E1A1085197 & No. 2021R1A2C2011634).
참고문헌
- Booker, J.R., Brachman, R., Quigley, R.M., and Rowe, R.K., 2004, Barrier Systems for Waste Disposal Facilities. Crc Press.
- Chang, C., Borglin, S., Chou, C., Kneafsey, T., Wu, Y., Zheng, L., Nakagawa, S., Xu, H., Peruzzo, L., and Birkholzer, J., 2021, Experimental Study of coupled thmc processes in bentonite buffer for geologic disposal of radioactive waste. In 55th US Rock Mech./Geomech. Symposium, virtual.
- Diaz, M.B., Kim, J.Y., Kim, K.Y., Lee, C., and Kim, J.S., 2021, Current status of x-ray ct based non destructive characterization of bentonite as an engineered barrier material. Tunnel and Underground Space, 31(6), 400-414. https://doi.org/10.7474/TUS.2021.31.6.400
- Ewing, R.C., Whittleston, R.A., and Yardley, B.W., 2016, Geological disposal of nuclear waste: a primer, Elements, 12(4), 233-237. https://doi.org/10.2113/gselements.12.4.233
- Liu, Z.R., Ye, W.M., Cui, Y.J., Zhu, H.H., Wang, Q., and Chen, Y.G., 2021, Development of swelling pressure for pellet mixture and compacted block of GMZ bentonite, Construction and Building Materials, 301, 124080. https://doi.org/10.1016/j.conbuildmat.2021.124080
- Liu, Z.R., Ye, W.M., Cui, Y.J., Zhu, H.H., and Wang, Q., 2022, Water infiltration and swelling pressure development in GMZ bentonite pellet mixtures with consideration of temperature effects, Engineering Geology, 305, 106718. https://doi.org/10.1016/j.enggeo.2022.106718
- Molinero-Guerra, A., Mokni, N., Delage, P., Cui, Y.J., Tang, A.M., Aimedieu, P., Bernier, F., and Bornert, M., 2017, In-depth characterisation of a mixture composed of powder/pellets MX80 bentonite, Applied Clay Science, 135, 538-546. https://doi.org/10.1016/j.clay.2016.10.030
- Saba, S., Barnichon, J.D., Cui, Y.J., Tang, A.M., and Delage, P., 2014, Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture, J. of Rock Mech. and Geotech. Eng., 6(2), 126-132. https://doi.org/10.1016/j.jrmge.2014.01.006
- Park, S., Yoon, S., Kwon, S., Lee, M.S., and Kim, G.Y., 2021, Temperature effect on the thermal and hydraulic conductivity of Korean bentonite buffer material, Progress in Nuclear Energy, 137, 103759. https://doi.org/10.1016/j.pnucene.2021.103759
- Xu, L., Ye, W.M., Chen, B., Chen, Y.G., and Cui, Y.J., 2016, Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials, Engineering Geology, 213, 46-54. https://doi.org/10.1016/j.enggeo.2016.08.015
- Yoo, M., Choi, H.J., Lee, M.S., and Lee, S.Y., 2016, Measurement of Properties of Domestic Bentonite for a Buffer of an HLW Repository, J. of Nuclear Fuel Cycle and Waste Tech., 14(2), 135-147. https://doi.org/10.7733/JNFCWT.2016.14.2.135
- Yoon, S., Cho, W., Lee, C., and Kim, G., 2018, Thermal conductivity investigation of korean bentonite buffer materials, Proceedings of the Korean Radioactive Waste Society Conference, Busan, Republic of Korea, May.