과제정보
This research was supported by the Academic Research Fund of Hoseo University in 2018 (2018-0119).
참고문헌
- Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system. 4th ed. Baltimore (MD): Lippincott Williams & Wilkins; 2012;691-748.
- Feix T, Romero J, Schmiedmayer HB, Dollar AM, Kragic D. The GRASP taxonomy of human grasp types. IEEE Trans Hum Mach Syst 2016;46(1):66-77. https://doi.org/10.1109/THMS.2015.2470657
- Ranganathan VK, Siemionow V, Sahgal V, Yue GH. Effects of aging on hand function. J Am Geriatr Soc 2001;49(11):1478-84. https://doi.org/10.1046/j.1532-5415.2001.4911240.x
- Gurram R, Gouw GJ, Rakheja S. Grip pressure distribution under static and dynamic loading. Exp Mech 1993;33(3):169-73. https://doi.org/10.1007/BF02322568
- Musalek C, Kirchengast S. Grip strength as an indicator of health-related quality of life in old age-a pilot study. Int J Environ Res Public Health 2017;14(12):1447. https://doi.org/10.3390/ijerph14121447
- Bohannon RW. Dynamometer measurements of hand-grip strength predict multiple outcomes. Percept Mot Skills 2001;93(2):323-8. https://doi.org/10.2466/pms.2001.93.2.323
- Stenholm S, Tiainen K, Rantanen T, Sainio P, Heliovaara M, Impivaara O, et al. Long-term determinants of muscle strength decline: prospective evidence from the 22-year mini-Finland follow-up survey. J Am Geriatr Soc 2012;60(1):77-85. https://doi.org/10.1111/j.1532-5415.2011.03779.x
- Cheung CL, Nguyen US, Au E, Tan KC, Kung AW. Association of handgrip strength with chronic diseases and multimorbidity: a cross-sectional study. Age (Dordr) 2013;35(3):929-41. https://doi.org/10.1007/s11357-012-9385-y
- Rijk JM, Roos PR, Deckx L, van den Akker M, Buntinx F. Prognostic value of handgrip strength in people aged 60 years and older: a systematic review and meta-analysis. Geriatr Gerontol Int 2016;16(1):5-20. https://doi.org/10.1111/ggi.12508
- Lee J. Associations between handgrip strength and disease-specific mortality including cancer, cardiovascular, and respiratory diseases in older adults: a meta-analysis. J Aging Phys Act 2020;28(2):320-31. https://doi.org/10.1123/japa.2018-0348
- Picon RV, Fuchs FD, Moreira LB, Riegel G, Fuchs SC. Trends in prevalence of hypertension in Brazil: a systematic review with meta-analysis. PLoS One 2012;7(10):e48255. https://doi.org/10.1371/journal.pone.0048255
- Jenmalm P, Dahlstedt S, Johansson RS. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation. J Neurophysiol 2000;84(6):2984-97. https://doi.org/10.1152/jn.2000.84.6.2984
- Diermayr G, McIsaac TL, Gordon AM. Finger force coordination underlying object manipulation in the elderly - a mini-review. Gerontology 2011;57(3):217-27. https://doi.org/10.1159/000295921
- Cole KJ. Grasp force control in older adults. J Mot Behav 1991;23(4):251-8. https://doi.org/10.1080/00222895.1991.9942036
- Kinoshita H, Francis PR. A comparison of prehension force control in young and elderly individuals. Eur J Appl Physiol Occup Physiol 1996;74(5):450-60. https://doi.org/10.1007/BF02337726
- Cole KJ, Rotella DL, Harper JG. Mechanisms for age-related changes of fingertip forces during precision gripping and lifting in adults. J Neurosci 1999;19(8):3238-47. https://doi.org/10.1523/jneurosci.19-08-03238.1999
- Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H. Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 2000;83(1):528-36. https://doi.org/10.1152/jn.2000.83.1.528
- Ehrsson HH, Fagergren E, Forssberg H. Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol 2001;85(6):2613-23. https://doi.org/10.1152/jn.2001.85.6.2613
- Ehrsson HH, Fagergren A, Johansson RS, Forssberg H. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. J Neurophysiol 2003;90(5):2978-86. https://doi.org/10.1152/jn.00958.2002
- Kinoshita H, Oku N, Hashikawa K, Nishimura T. Functional brain areas used for the lifting of objects using a precision grip: a PET study. Brain Res 2000;857(1-2):119-30. https://doi.org/10.1016/S0006-8993(99)02416-6
- Kuhtz-Buschbeck JP, Ehrsson HH, Forssberg H. Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci 2001;14(2):382-90. https://doi.org/10.1046/j.0953-816x.2001.01639.x
- Schmitz C, Jenmalm P, Ehrsson HH, Forssberg H. Brain activity during predictable and unpredictable weight changes when lifting objects. J Neurophysiol 2005;93(3):1498-509. https://doi.org/10.1152/jn.00230.2004
- Ehrsson HH, Fagergren A, Ehrsson GO, Forssberg H. Holding an object: neural activity associated with fingertip force adjustments to external perturbations. J Neurophysiol 2007;97(2):1342-52. https://doi.org/10.1152/jn.01253.2005
- Zariffa J, Kapadia N, Kramer JL, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, et al. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord 2012;50(3):220-6. https://doi.org/10.1038/sc.2011.104
- Zariffa J, Kapadia N, Kramer JL, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, et al. Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury. IEEE Trans Neural Syst Rehabil Eng 2012;20(3):341-50. https://doi.org/10.1109/TNSRE.2011.2181537
- Mekki M, Delgado AD, Fry A, Putrino D, Huang V. Robotic rehabilitation and spinal cord injury: a narrative review. Neurotherapeutics 2018;15(3):604-17. https://doi.org/10.1007/s13311-018-0642-3
- Francisco GE, Yozbatiran N, Berliner J, O'Malley MK, Pehlivan AU, Kadivar Z, et al. Robot-assisted training of arm and hand movement shows functional improvements for incomplete cervical spinal cord injury. Am J Phys Med Rehabil 2017;96(10 Suppl 1):S171-7. https://doi.org/10.1097/PHM.0000000000000815
- Cappello L, Meyer JT, Galloway KC, Peisner JD, Granberry R, Wagner DA, et al. Assisting hand function after spinal cord injury with a fabric-based soft robotic glove. J Neuroeng Rehabil 2018;15(1):59. https://doi.org/10.1186/s12984-018-0391-x
- Schabowsky CN, Godfrey SB, Holley RJ, Lum PS. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot. J Neuroeng Rehabil 2010;7:36. https://doi.org/10.1186/1743-0003-7-36
- Nakanishi T, Kobayashi H, Obata H, Nakagawa K, Nakazawa K. Remarkable hand grip steadiness in individuals with complete spinal cord injury. Exp Brain Res 2019;237(12):3175-83. https://doi.org/10.1007/s00221-019-05656-2
- Zariffa J, Steeves J, Pai DK. Changes in hand muscle synergies in subjects with spinal cord injury: characterization and functional implications. J Spinal Cord Med 2012;35(5):310-8. https://doi.org/10.1179/2045772312Y.0000000037
- FlexiForceTM standard model A201. Tekscan [Internet]. South Boston (MA): 2021 [cited 2021 Dec 17]. Available from: https://www.tekscan.com/sites/default/files/resources/FLX-Datasheet-A201-RevI.pdf.
- Martim P, Frango VL, Postolache O, Yang Y. Smart object for physical rehabilitation assessment. Paper presented at: 2018 International Conference and Exposition on Electrical and Power Engineering (EPE); 2018 Oct 18-19; Iasi, Romania. Danvers (MA): IEEE, 2018. p. 0678-82.
- Fess EE, Moran CA. Clinical assessment recommendations. Mount Laurel (NJ): American Society of Hand Therapists; 1981.
- Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg Am 1984;9(2):222-6. https://doi.org/10.1016/S0363-5023(84)80146-X
- Pylatiuk C, Kargov A, Schulz S, Doderlein L. Distribution of grip force in three different functional prehension patterns. J Med Eng Technol 2006;30(3):176-82. https://doi.org/10.1080/03091900600565217
- Stival F, Michieletto S, Cognolato M, Pagello E, Muller H, Atzori M. A quantitative taxonomy of human hand grasps. J Neuroeng Rehabil 2019;16(1):28. https://doi.org/10.1186/s12984-019-0488-x
- Hall RS, Desmoulin GT, Milner TE. A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force. J Biomech 2008;41(16):3492-5. https://doi.org/10.1016/j.jbiomech.2008.09.031
- Florez JA, Velasquez A. Calibration of force sensing resistors (fsr) for static and dynamic applications. Paper presented at: 2010 IEEE ANDESCON; 2010 Sep 14-17; Bogota, Colombia. Danvers (MA): IEEE, 2010. p. 1-6.