DOI QR코드

DOI QR Code

A Markov-based prediction model of tunnel geology, construction time, and construction costs

  • Mahmoodzadeh, Arsalan (Department of Civil Engineering, University of Halabja) ;
  • Mohammadi, Mokhtar (Department of Information Technology, Lebanese French University) ;
  • Ali, Hunar Farid Hama (Department of Civil Engineering, University of Halabja) ;
  • Salim, Sirwan Ghafoor (City Planning Department, Technical College of Engineering, Sulaimani Polytechnic University) ;
  • Abdulhamid, Sazan Nariman (Department of Civil Engineering, College of Engineering, Salahaddin University-Erbil) ;
  • Ibrahim, Hawkar Hashim (Department of Civil Engineering, College of Engineering, Salahaddin University-Erbil) ;
  • Rashidi, Shima (Department of Computer Science, College of Science and Technology, University of Human Development)
  • Received : 2021.07.07
  • Accepted : 2021.12.06
  • Published : 2022.02.25

Abstract

The necessity of estimating the time and cost required for tunnel construction has led to extensive research in this regard. Since geological conditions are significant factors in terms of time and cost of road tunnels, considering these conditions is crucial. Uncertainties about the geological conditions of a tunnel alignment cause difficulties in planning ahead of the required construction time and costs. In this paper, the continuous-space, discrete-state Markov process has been used to predict geological conditions. The Monte-Carlo (MC) simulation (MCS) method is employed to estimate the construction time and costs of a road tunnel project using the input data obtained from six tunneling expert questionnaires. In the first case, the input data obtained from each expert are individually considered and in the second case, they are simultaneously considered. Finally, a comparison of these two modes based on the technique presented in this article suggests considering views of several experts simultaneously to reduce uncertainties and ensure the results obtained for geological conditions and the construction time and costs.

Keywords

References

  1. Aliahmadi, A., Sadjadi, S. and Jafari-Eskandari, M. (2011), "Design a new intelligence expert decision making using game theory and fuzzy AHP to risk management in design, construction, and operation of tunnel projects (case studies: Resalat tunnel)", Int. J. Adv. Manufact. Tech., 53, 789-798. https://doi.org/10.1007/s00170-010-2852-7.
  2. Bai, X.D., Cheng, W.C., Ong, D.E.L. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
  3. Bezdan, T., Stoean, C., Naamany, A.A., Bacanin, N., Rashid, T.A., Zivkovic, M. and Venkatachalam, K. (2021), "Hybrid fruit-fly optimization algorithm with K-means for text document clustering", Mathematics, 9(16), 1929. https://doi.org/10.3390/math9161929.
  4. Cuk, B.A., Bezdan, T., Bacanin, N., Zivkovic, M., Venkatachalam, K., Rashid, T.A. and Devi, V.K. (2021). "Feedforward multi-layer perceptron training by hybridized method between genetic algorithm and artificial bee colony", Data Science and Data Analytics, 1st Ed., ImprintChapman and Hall/CRC.
  5. Einstein, H.H., Indermitte, C., Sinfield, J., Descoeudres, F.P. and Dudt, J.P. (1999). "Decision aids for tunneling." Transportation Research Record 1656", Transportation Research Board, 6-13.
  6. Guan, Z., Deng, T., Du, S., Li, B. and Jiang, Y. (2012), "Markovian geology prediction approach and its application in mountain tunnels", Tunn. Undergr. Sp. Tech., 31, 61-67. https://doi.org/10.1016/j.tust.2012.04.007.
  7. Guan, Z., Deng, T., Jiang, Y., Zhao, C. and Huang, H. (2014), "Probabilistic estimation of ground conditions and construction cost for mountain tunnels", Tunn. Undergr. Sp. Tech., 42, 175-183. https://doi.org/10.1016/j.tust.2014.02.014.
  8. Han, W., Jiang, Y., Zhang, X., Koga, D. and Gao, Y. (2021), "Quantitative assessment on the reinforcing behavior of the CFRP-PCM method on tunnel linings", Geomech. Eng., 25(2), 123-134. https://doi.org/10.12989/gae.2021.25.2.123.
  9. Ioannou, P.G. (1987), "Geologic prediction model for tunneling", J. Constr. Eng. Management, 113(4), 569-590. https://doi.org/10.1061/(ASCE)0733-9364(1987)113:4(569).
  10. Julian, W., Martin, L., Andrew, M. and George, K. (2004), "Development of non-homogeneous and hierarchical hidden Markov models for modeling monthly rainfall and streamflow time series", Conference on Critical Transitions in Water and Environmental Resources Management, 212, 1-10. https://doi.org/10.1061/40737(2004)212.
  11. Jurado, A., De, G.F., Vilarrasa, V., Bolster, D., Sanchez-Vila, X., Fernandez-Garcia, D. and Tartakovsky, D.M. (2012), "Probabilistic analysis of groundwater-related risks at subsurface excavation sites", Eng. Geol., 125(27), 35-44. https://doi.org/10.1016/j.enggeo.2011.10.015.
  12. Jabar, A.L. and Rashid, T.A. (2018), "A modified particle swarm optimization with neural network via euclidean distance", Int. J. Recent Contributions from Engineering, Science & IT, 6(1), 4-18. https://doi.org/10.3991/ijes.v6i1.8080
  13. Khishe, M. and Mosavi, M.R. (2020), "Chimp optimization algorithm", Exp. Syst. Appl., 149, 113338. https://doi.org/10.1016/j.eswa.2020.113338.
  14. Khishe, M. and Mosavi, M.R. (2019), "Improved whale trainer for sonar datasets classification using neural network", Appl. Acoust., 154, 176-192. https://doi.org/10.1016/j.apacoust.2019.05.006.
  15. Liu, J., Jiang, Y., Zhang, Y. and Sakaguchi, O. (2021). "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns", Geomech. Eng., 25(6), 439-454. https://doi.org/10.12989/gae.2021.25.6.439.
  16. Li, B., Fu, Y., Hong, Y. and Cao, Z. (2021), "Deterministic and probabilistic analysis of tunnel face stability using support vector machine", Geomech. Eng., 25(1), 17-30. https://doi.org/10.12989/gae.2021.25.1.017.
  17. Leu, S. and Adi, T. (2011), "Probabilistic prediction of tunnel geology using a hybrid neural-HMM", Eng. Appl. Artif. Intel., 38(4), 658-665. https://doi.org/10.1016/j.engappai.2011.02.010.
  18. Liu, D.H., Zhou, Y.Q., Wang, S. and Zhang, Y.L. (2009), "Stochastic simulation and risk analysis of water tunnel TBM construction scheduling based on geologic prediction using Markov process", J. Syst. Simul., 21(2), 558-562.
  19. Mosavi, M., Kaveh, M., Khishe, M. and Aghababaie, M. (2018), "Design and implementation a sonar data set classifier using multi-layer perceptron neural network trained by elephant herding optimization", Iran J. Mar. Tech., 5(1), 1-12. http://ijmt.iranjournals.ir/article_31015.html?lang=en.
  20. Mosavi, M., Khishe, M. and Moridi, A. (2016), "Classification of Sonar Target using Hybrid Particle Swarm and Gravitational Search", Iran J. Mar. Tech., 3(1), 1-13. http://ijmt.iranjournals.ir/article_19580.html?lang=en.
  21. Mosavi, M.R. and Khishe, M. (2017), "Hatam Khani Y, Shabani M. training radial basis function neural network using stochastic fractal search algorithm to classify sonar dataset", Iran. J. Elec. Electron. Eng., 13(1), 100-111. http://ijeee.iust.ac.ir/article-1-959-en.html.
  22. Mahmoodzadeh, A. and Zare, S. (2016), "Probabilistic prediction of the expected ground conditions and construction time and costs in road tunnels", J. Rock Mech. Geotech. Eng., 8(5), 734-745. https://doi.org/10.1016/j.jrmge.2016.07.001.
  23. Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Rashid, T.A., Sherwani, A.F.H., Faraj, R.H. and Darwesh, A.M. (2019), "Updating ground conditions and time-cost scatter-gram in tunnels during excavation", Automat. Constr,, 105, 102822. https://doi.org/10.1016/j.autcon.2019.04.017.
  24. Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Ibrahim, H.H., Hama-Ali, H.F. and Salim, S.G. (2021a), "Dynamic reduction of time and cost uncertainties in tunneling projects", Tunn. Undergr. Sp. Tech., 109, 103774. https://doi.org/10.1016/j.tust.2020.103774.
  25. Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H.H., Abdulhamid, S.N., Salim, S.G., Hama Ali, H.F. and Majeed, M.K. (2021b), "Artificial intelligence forecasting models of uniaxial compressive strength", Transport. Geotech., 27, 100499. https://doi.org/10.1016/j.trgeo.2020.100499.
  26. Mahmoodzadeh, A., Mohammadi, M., Hama Ali, H.F., Abdulhamid, S.N., Ibrahim, H.H. and Noori, K.M.G. (2021c). "Dynamic prediction models of rock quality designation in tunneling projects", Transport. Geotech., 27, 100497. https://doi.org/10.1016/j.trgeo.2020.100497.
  27. Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Hama Ali, H.F., Abdullah, A.I. and Al-Salihi, N.K. (2021d). "Forecasting tunnel geology, construction time and costs using machine learning methods", Neural Comput. Appl., 33, 321-348. https://doi.org/10.1007/s00521-020-05006-2.
  28. Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H.H., Abdulhamid, S.N., Hama Ali, H.F., Hasan, A.M., Khishe, M. and Mahmud, H. (2021e), "Machine learning forecasting models of disc cutters life of tunnel boring machine", Automat. Constr., 128, 103779. https://doi.org/10.1016/j.autcon.2021.103779.
  29. Mahmoodzadeh, A., Mohammadi, M., Noori, K.M.G., Khishe, M., Ibrahim, H.H., Hama Ali, H.F. and Abdulhamid, S.N. (2021f), "Presenting the best prediction model of water inflow into drill and blast tunnels among several machine learning techniques", Automat. Constr., 127, 103719. https://doi.org/10.1016/j.autcon.2021.103719.
  30. Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H.H., Noori, K.M.G., Abdulhamid, S.N. and Hama Ali, H.F. (2021g), "Forecasting sidewall displacement of underground caverns using machine learning techniques", Automat. Constr., 123, 103530. https://doi.org/10.1016/j.autcon.2020.103530.
  31. Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H.H., Rashid, T.A., Aldalwie, A.H.M., Hama Ali, H.F. and Daraei, A. (2021h), "Tunnel geomechanical parameters prediction using Gaussian process regression", Machine Learn. Appl., 3, 100020. https://doi.org/10.1016/j.mlwa.2021.100020.
  32. Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Nejati, H.R., Noori, K.M.G., Ibrahim, H.H. and Hama Ali, H.F. (2021i), "Predicting construction time and cost of tunnels using Markov chain model considering opinions of experts", Tunn. Undergr. Sp. Tech., 116, 104109. https://doi.org/10.1016/j.tust.2021.104109.
  33. Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Hama Ali, H.F., Al-Salihi, N.K. and Omer, R.M.D. (2020a), "Forecasting maximum surface settlement caused by urban tunneling", Automat. Constr., 120, 103375. https://doi.org/10.1016/j.autcon.2020.103375.
  34. Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Faraj, R.H., Omer, R.M.D. and Sherwani, A.F.H. (2020b), "Decision-making in tunneling using artificial intelligence tools", Tunn. Undergr. Sp. Tech., 103, 103514. https://doi.org/10.1016/j.tust.2020.103514.
  35. Pan, Q., Chen, Z., Wu, Y., Dias, D. and Oreste, P. (2021), "Probabilistic tunnel face stability analysis: A comparison between LEM and LAM", Geomech. Eng., 24(4), 399-406. https://doi.org/10.12989/gae.2021.24.4.399.
  36. Qiao, W., Khishe, M. and Ravakhah, S. (2021), "Underwater targets classification using local wavelet acoustic pattern and Multi-Layer Perceptron neural network optimized by modified Whale Optimization Algorithm", Ocean Eng., 219, 108415. https://doi.org/10.1016/j.oceaneng.2020.108415.
  37. Ritter, S., Einstein, H.H. and Galler, R. (2013), "Planning the handling of tunnel excavation material - A process of decision making under uncertainty", Tunn. Undergr. Sp. Tech., 33, 193-201. https://doi.org/10.1016/j.tust.2012.08.009.
  38. Rashid, T.A., Hassan, M.K. and Fraser, K. (2019) "Improvement of Variant Adaptable LSTM Trained With Metaheuristic Algorithms for Healthcare Analysis, Source Title: Advanced Classification Techniques for Healthcare Analysis", https://doi.org/10.4018/978-1-5225-7796-6.ch006.
  39. Spackova, O. and Straub, D. (2012), "Risk management of tunnel construction projects: Modelling uncertainty of construction time (cost) estimates for risk assessment and decision making", Doctoral thesis, Czech Technical University, Prague.
  40. Spackova, O. and Straub, D. (2013), "Dynamic Bayesian network for probabilistic modeling of tunnel excavation processes", Comput. - Aided Civil Infrastruct. Eng., 28(1), 1-21. https://doi.org/10.1111/j.1467-8667.2012.00759.x.
  41. Sousa, R.L. and Einstein, H.H. (2012). "Risk analysis during tunnel construction using Bayesian Networks: Porto Metro case study", Tunn. Undergr. Sp. Tech., 27(1), 86-100. https://doi.org/10.1016/j.tust.2011.07.003.
  42. Vargas, J.P., Koppe, J.C. and Perez, S. (2014). "Monte Carlo simulation as a tool for tunneling planning", Tunn. Undergr. Sp. Tech., 40, 203-209. https://doi.org/10.1016/j.tust.2013.10.011.
  43. Xu, Z., Xian, M., Li, X., Zhou, W., Wang, J., Wang, Y. and Chai, J. (2021). "Risk assessment of water inrush in karst shallow tunnel with stable surface water supply: Case study", Geomech. Eng., 25(6), 495-508. https://doi.org/10.12989/gae.2021.25.6.495.
  44. Zhang, B., Jiang, J., Zhang, D.B. and Ze, L. (2021), "Upper bound solution of collapse pressure and permanent displacement of 3D tunnel faces using the pseudo-dynamic method and the kinematic approach", Geomech. Eng., 25(6), 521-533. https://doi.org/10.12989/gae.2021.25.6.521.