DOI QR코드

DOI QR Code

Use of multi-hybrid machine learning and deep artificial intelligence in the prediction of compressive strength of concrete containing admixtures

  • Jian, Guo (School of Civil Engineering, Lanzhou Jiaotong University) ;
  • Wen, Sun (School of Civil Engineering, Lanzhou Jiaotong University) ;
  • Wei, Li (Guangdong Guanyue Road and Bridge Co.Ltd.)
  • Received : 2021.10.11
  • Accepted : 2021.12.01
  • Published : 2022.01.25

Abstract

Conventional concrete needs some improvement in the mechanical properties, which can be obtained by different admixtures. However, making concrete samples costume always time and money. In this paper, different types of hybrid algorithms are applied to develop predictive models for forecasting compressive strength (CS) of concretes containing metakaolin (MK) and fly ash (FA). In this regard, three different algorithms have been used, namely multilayer perceptron (MLP), radial basis function (RBF), and support vector machine (SVR), to predict CS of concretes by considering most influencers input variables. These algorithms integrated with the grey wolf optimization (GWO) algorithm to increase the model's accuracy in predicting (GWMLP, GWRBF, and GWSVR). The proposed MLP models were implemented and evaluated in three different layers, wherein each layer, GWO, fitted the best neuron number of the hidden layer. Correspondingly, the key parameters of the SVR model are identified using the GWO method. Also, the optimization algorithm determines the hidden neurons' number and the spread value to set the RBF structure. The results show that the developed models all provide accurate predictions of the CS of concrete incorporating MK and FA with R2 larger than 0.9972 and 0.9976 in the learning and testing stage, respectively. Regarding GWMLP models, the GWMLP1 model outperforms other GWMLP networks. All in all, GWSVR has the worst performance with the lowest indices, while the highest score belongs to GWRBF.

Keywords

References

  1. Al-Fugara, A., Ahmadlou, M., Al-Shabeeb, A.R., AlAyyash, S., Al-Amoush, H. and Al-Adamat, R. (2020), "Spatial mapping of groundwater springs potentiality using grid search-based and genetic algorithm-based support vector regression", Geocarto Int., 1-20. https://doi.org/10.1080/10106049.2020.1716396.
  2. Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
  3. ASTM C618 (2019), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
  4. Bai, J., Wild, S., Sabir, B.B. and Kinuthia, J.M. (1999), "Workability of concrete incorporating pulverized fuel ash and metakaolin", Mag. Concrete Res., 51(3), 207-216. https://doi.org/10.1680/macr.1999.51.3.207
  5. Basheer, I.A. and Hajmeer, M. (2000), "Artificial neural networks: Fundamentals, computing, design, and application", J. Microbiol. Method., 43(1), 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3.
  6. Baykasoglu, A., Oztas, A. and O zbay, E. (2009), "Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches", Expert Syst. Appl., 36(3), 6145-6155. https://doi.org/10.1016/j.eswa.2008.07.017.
  7. Benemaran, R.S. and Esmaeili-Falak, M. (2020), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput. Concrete, 26(4), 309-316. https://doi.org/10.12989/cac.2020.26.4.309.
  8. Bounds, D.G., Lloyd, P.J., Mathew, B.G. and Waddell, G. (1988), "A multilayer perceptron network for the diagnosis of low back pain", ICNN, 2, S481-489. https://doi.org/10.1109/ICNN.1988.23963.
  9. Broomhead, D.S. and Lowe, D. (1988), Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks, Royal Signals and Radar Establishment Malvern, UK.
  10. Buhmann, M.D. (2003), Radial Basis Functions: Theory and Implementations, 12, Cambridge University Press.
  11. Cassagnabere, F., Escadeillas, G. and Mouret, M. (2009), "Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete", Constr. Build. Mater., 23(2), 775-784. https://doi.org/10.1016/j.conbuildmat.2008.02.022.
  12. Coleman, N.J. and Page, C.L. (1997), "Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin", Cement Concrete Res., 27(1), 147-154. https://doi.org/10.1016/S0008-8846(96)00184-6.
  13. Esmaeili-choobar, N., Esmaeili-falak, M., Roohi-hir, M. and Keshtzad, S. (2013), "Evaluation of collapsibility potential at Talesh", EJGE, 2561-2573.
  14. Esmaeili-Falak, M, Katebi, H. and Javadi, A.A. (2020), "Effect of freezing on stress-strain characteristics of granular and cohesive soils", J. Cold Region. Eng., 34(2), 05020001. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000205.
  15. Esmaeili-Falak, M. (2017), "Effect of system's geometry on the stability of frozen wall in excavation of saturated granular soils", Ph.D. Dissertation of Philosophy, University of Tabriz, Tabriz, Iran.
  16. Esmaeili-Falak, M. and Hajialilue-Bonab, M. (2012), "Numerical studying the effects of gradient degree on slope stability analysis using limit equilibrium and finite element methods", Int. J. Acad. Res., 4(4), 216-222. https://doi.org/10.7813/2075-4124.2012/4-4/A.30.
  17. Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "Experimental study of the mechanical behavior of frozen soils-A case study of tabriz subway", Periodica Polytechnica Civil Eng., 62(1), 117-125.
  18. Esmaeili-Falak, M., Katebi, H., Javadi, A. and Rahimi, S. (2017), "Experimental investigation of stress and strain characteristics of frozen sandy soils-A case study of Tabriz subway", Modares Civil Eng. J., 17(5), 13-23.
  19. Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Region. Eng., 33(3), 4019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
  20. Esmaeili-Falak, M., Sarkhani Benemaran, R. and Seifi, R. (2020), "Improvement of the mechanical and durability parameters of construction concrete of the Qotursuyi Spa", Concrete Res., 13(2), 119-134. https://doi.org/10.22124/JCR.2020.14518.1395.
  21. Faris, H., Aljarah, I., Al-Betar, M.A. and Mirjalili, S. (2018), "Grey wolf optimizer: A review of recent variants and applications", Neural Comput. Appl., 30(2), 413-435. https://doi.org/10.1007/s00521-017-3272-5.
  22. Frias, M. and Cabrera, J. (2000), "Pore size distribution and degree of hydration of metakaolin-cement pastes", Cement Concrete Res., 30(4), 561-569. https://doi.org/10.1016/S0008-8846(00)00203-9.
  23. Gilan, S.S., Jovein, H.B. and Ramezanianpour, A.A. (2012), "Hybrid support vector regression-Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin", Constr. Build. Mater., 34, 321-329. https://doi.org/10.1016/j.conbuildmat.2012.02.038.
  24. Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.
  25. Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266.
  26. Gordan, B., Koopialipoor, M., Clementking, A., Tootoonchi, H., and Mohamad, E.T. (2019), "Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques", Eng. Comput., 35(3), 945-954. https://doi.org/10.1007/s00366-018-0642-2.
  27. Hasanipanah, M., Armaghani, D.J., Amnieh, H.B., Koopialipoor, M. and Arab, H. (2018), "A risk-based technique to analyze flyrock results through rock engineering system", Geotech. Geol. Eng., 36(4), 2247-2260. https://doi.org/10.1007/s10706-018-0459-1.
  28. Khatib, J.M. (2008), "Metakaolin concrete at a low water to binder ratio", Constr. Build. Mater., 22(8), 1691-1700. https://doi.org/10.1016/j.conbuildmat.2007.06.003.
  29. Khatib, J.M. and Hibbert, J.J. (2005), "Selected engineering properties of concrete incorporating slag and metakaolin", Constr. Build. Mater., 19(6), 460-472. https://doi.org/10.1016/j.conbuildmat.2004.07.017.
  30. Khatib, J.M. and Wild, S. (1998), "Sulphate resistance of metakaolin mortar", Cement Concrete Res., 28(1), 83-92. https://doi.org/10.1016/S0008-8846(97)00210-X.
  31. Kim, H.S., Lee, S.H. and Moon, H.Y. (2007), "Strength properties and durability aspects of high strength concrete using Korean metakaolin", Constr. Build. Mater., 21(6), 1229-1237. https://doi.org/10.1016/j.conbuildmat.2006.05.007.
  32. Kisi, O. (2008), "The potential of different ANN techniques in evapotranspiration modelling", Hydrologic. Pr. Int. J., 22(14), 2449-2460. https://doi.org/10.1002/hyp.6837.
  33. Kisi, O. and Kerem Cigizoglu, H. (2007), "Comparison of different ANN techniques in river flow prediction", Civil Eng. Envir. Syst., 24(3), 211-231. https://doi.org/10.1080/10286600600888565.
  34. Koopialipoor, M., Ghaleini, E.N., Haghighi, M., Kanagarajan, S., Maarefvand, P. and Mohamad, E.T. (2019), "Overbreak prediction and optimization in tunnel using neural network and bee colony techniques", Eng. Comput., 35(4), 1191-1202. https://doi.org/10.1007/s00366-018-0658-7.
  35. Koopialipoor, M., Jahed Armaghani, D., Haghighi, M. and Ghaleini, E.N. (2019), "A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels", Bullet. Eng. Geol. Envir., 78(2), 981-990. https://doi.org/10.1007/s10064-017-1116-2.
  36. Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of fly ash and silica fume on compressive and fracture behaviors of concrete", Cement Concrete Res., 28(2), 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X.
  37. Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Soft., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  38. Muro, C., Escobedo, R., Spector, L. and Coppinger, R.P. (2011), "Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations", Behav. Proc., 88(3), 192-197. https://doi.org/10.1016/j.beproc.2011.09.006.
  39. Parande, A.K., Babu, B.R., Karthik, M.A., Kumaar, K.K.D. and Palaniswamy, N. (2008), "Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar", Constr. Build. Mater., 22(3), 127-134. https://doi.org/10.1016/j.conbuildmat.2006.10.003.
  40. Patel, P.J. (2014), "Health analysis of high performance concrete by using waste material", Ph.D. Dissertation of Philosophy, Ganpat University, Mehsana, India.
  41. Pierini, J.O., Gomez, E.A. and Telesca, L. (2012), "Prediction of water flows in Colorado River, Argentina", Latin Am. J. Aquat. Res., 40(4), 872-880. https://doi.org/103856/vol40-issue4-fulltext-5. https://doi.org/10.3856/vol40-issue4-fulltext-5
  42. Pinkus, A. (1999), "Approximation theory of the MLP model in neural networks", Acta Num., 8, 143-195. https://doi.org/10.1017/S0962492900002919.
  43. Poon, C.S., Kou, S.C. and Lam, L. (2006), "Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete", Constr. Build. Mater., 20(10), 858-865. https://doi.org/10.1016/j.conbuildmat.2005.07.001.
  44. Poorjafar, A., Esmaeili-Falak, M. and Katebi, H. (2021), "Pile-soil interaction determined by laterally loaded fixed head pile group", Geomech. Eng., 26(1), 13-25. https://doi.org/10.12989/gae.2021.26.1.013.
  45. Sabir, B.B., Wild, S. and Bai, J. (2001), "Metakaolin and calcined clays as pozzolans for concrete: A review", Cement Concrete Compos., 23(6), 441-454. https://doi.org/10.1016/S0958-9465(00)00092-5.
  46. Saha, P., Debnath, P. and Thomas, P. (2020), "Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach", Neural Comput. Appl., 32, 7995-8010. https://doi.org/10.1007/s00521-019-04267-w.
  47. Saridemir, M. (2009), "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", Adv. Eng. Soft., 40(9), 920-927. https://doi.org/10.1016/j.advengsoft.2008.12.008.
  48. Saridemir, M. (2010), "Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash", Constr. Build. Mater., 24(10), 1911-1919. https://doi.org/10.1016/j.conbuildmat.2010.04.011.
  49. Sarkhani Benemaran, R. (2017), "Experimental and analytical study of pile-stabilized layered slopes", Ph.D. Dissertation of Philosophy, University of Tabriz, Tabriz, Iran.
  50. Sarkhani Benemaran, R., Esmaeili-Falak, M. and Katebi, H. (2020), "Physical and numerical modelling of pile-stabilized saturated layered slopes", Proc. Inst Civil Eng. Geotech. Eng., 1-50. https://doi.org/10.1680/jgeen.20.00152.
  51. Seleem, H.E.D.H., Rashad, A.M. and El-Sabbagh, B.A. (2010), "Durability and strength evaluation of high-performance concrete in marine structures", Constr. Build. Mater., 24(6), 878-884. https://doi.org/10.1016/j.conbuildmat.2010.01.013.
  52. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.
  53. Shekarchi, M., Bonakdar, A., Bakhshi, M., Mirdamadi, A. and Mobasher, B. (2010), "Transport properties in metakaolin blended concrete", Constr. Build. Mater., 24(11), 2217-2223. https://doi.org/10.1016/j.conbuildmat.2010.04.035.
  54. Siddique, R. (2004), "Performance characteristics of high-volume Class F fly ash concrete", Cement Concrete Res., 34(3), 487-493. https://doi.org/10.1016/j.cemconres.2003.09.002.
  55. Siddique, R. and Kadri, E.H. (2011), "Effect of metakaolin and foundry sand on the near surface characteristics of concrete", Constr. Build. Mater., 25(8), 3257-3266. https://doi.org/10.1016/j.conbuildmat.2011.03.012.
  56. Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.
  57. Vapnik, V. (2013), "The nature of statistical learning theory", Springer Science Business Media, Germany.
  58. Vejmelkova, E., Pavlikova, M., Keppert, M., Kersner, Z., Rovnanikova, P., Ondracek, M., Sedlmajer, M. and Cerny, R. (2010), "High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics", Constr. Build. Mater., 24(8), 1404-1411. https://doi.org/10.1016/j.conbuildmat.2010.01.017.
  59. Wang, L. (2005), Support Vector Machines: Theory and Applications, 117, Springer Science and Business Media.
  60. Wild, S., Khatib, J.M. and Jones, A. (1996), "Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete", Cement Concrete Res., 26(10), 1537-1544. https://doi.org/10.1016/0008-8846(96)00148-2.
  61. Yan, K. and Shi, C. (2010), "Prediction of elastic modulus of normal and high strength concrete by support vector machine", Constr. Build. Mater., 24(8), 1479-1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006.
  62. Zaji, A.H. and Bonakdari, H. (2014), "Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs", Flow Meas. Instrum., 40, 149-156. https://doi.org/10.1016/j.flowmeasinst.2014.10.002.
  63. Zhang, M.H. and Malhotra, V.M. (1995), "Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete", Cement Concrete Res., 25(8), 1713-1725. https://doi.org/10.1016/0008-8846(95)00167-0.