DOI QR코드

DOI QR Code

Dynamic punching shear tests of flat slab-column joints with 5D steel fibers

  • Alvarado, Yezid A. (Pontificia Universidad Javeriana) ;
  • Torres, Benjamin (Department of Civil Engineering, University of Alicante) ;
  • Buitrago, Manuel (ICITECH, Universitat Politecnica de Valencia) ;
  • Ruiz, Daniel M. (Pontificia Universidad Javeriana) ;
  • Torres, Sergio Y. (Pontificia Universidad Javeriana) ;
  • Alvarez, Ramon A. (Pontificia Universidad Javeriana)
  • Received : 2020.07.22
  • Accepted : 2021.11.02
  • Published : 2022.02.10

Abstract

This study aimed to analyze the dynamic punching shear performance of slab-column joints under cyclic loads with the use of double-hooked end (5D) steel fibers. Structural systems such as slab-column joints are widely found in infrastructures. The susceptibility to collapse of such structures when submitted to seismic loads is highly dependent on the structural performance of the slab-column connections. For this reason, the punching capacity of reinforced concrete (RC) structures has been the subject of a great number of studies. Steel fibers are used to achieve a certain degree of ductility under seismic loads. In this context, 5D steel hooked fibers provide high levels of fiber anchoring, tensile strength and ductility. However, only limited research has been carried out on the performance under cyclic loads of concrete structural members containing steel fibers. This study covers this gap with experimental testing of five different full-scale subassemblies of RC slab-column joints: one without punching reinforcement, one with conventional punching reinforcement and three with 5D steel fibers. The subassemblies were tested under cyclic loading, which consisted of applying increasing lateral displacement cycles, such as in seismic situations, with a constant axial load on the column. This set of cycles was repeated for increasing axial loads on the column until failure. The results showed that 5D steel fiber subassemblies: i) had a greater capacity to dissipate energy, ii) improved punching shear strength and stiffness degradation under cyclic loads; and iii) increased cyclic loading capacity.

Keywords

Acknowledgement

This work was financially supported by Cementos Argos, Colciencias and the Pontificia Universidad Javeriana de Bogota (Colombia). The authors also wish to express their gratitude to the Bekaert Company for their invaluable assistance.

References

  1. Abdallah, S., Fan, M. and Rees, D.W.A. (2016), "Analysis and modelling of mechanical anchorage of 4D/5D hooked end steel fibres", Mater. Des., 112, 539-552. https://doi.org/10.1016/j.matdes.2016.09.107.
  2. ACI 318-14 (2014), Building Code Requirements for Structural Concrete.
  3. Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T. (2017), "Influence of double hooked-end steel fibers and slag on mechanical and durability properties of high performance recycled aggregate concrete", Compos. Struct., 181, 273-284. https://doi.org/10.1016/j.compstruct.2017.08.086.
  4. Akguzel, U. and Pampanin, S. (2012), "Assessment and design procedure for the seismic retrofit of reinforced concrete beamcolumn joints using FRP composite materials", J. Compos. Constr., 16, 21-34. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000242.
  5. Argos Company (2020), https://www.argos.co/colombia.
  6. ASTM C136-01 (2011), Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.
  7. ASTM C39-14 (2014), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
  8. Au, F.T.K., Huang, K. and Pam, H.J. (2005), "Diagonally-reinforced beam-column joints reinforced under cyclic loading", Proc. Inst. Civil Eng.-Struct. Build., 158, 21-40. https://doi.org/10.1680/stbu.2005.158.1.21.
  9. Basf Company (2020), https://www.hormigon-altasprestaciones.com/glenium-aditivos-hormigon.
  10. Bekaert Dramix Company (2020). https://www.bekaert.com/.
  11. Benavent, A., Cahis, X. and Catalan, A. (2008), "Seismic behavior of interior connections in existing waffle-flat-plate structures", Eng. Struct., 30, 2510-2516. https://doi.org/10.1016/j.engstruct.2008.02.004.
  12. Calavera, J. (2005), Patologia de Estructuras de Hormigon Armado y Pretensado, 2nd Edition, Intemac, Madrid.
  13. Canbolat, B.A., Parra-Montesinos, G.J. and Wight, J.K. (2005), "Experimental study on seismic behavior of high-performance fiber-reinforced cement composite coupling beams", ACI Struct. J., 102, 159-166. https://doi.org/10.14359/13541.
  14. De Stefano, M. and Pintucchi, B. (2008), "A review of research on seismic behaviour of irregular building structures since 2002", Bull. Earthq. Eng., 6, 285-308. https://doi.org/10.1007/s10518-007-9052-3.
  15. Derogar, S., Ince, C. and Mandal, P. (2018), "Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement", Struct. Eng. Mech., 66, 203-215. https://doi.org/10.12989/sem.2018.66.2.203.
  16. EHE-08 (2008), Instruccion de Hormigon Estructural.
  17. Fernandez-Canovas, M. (1982), "Hormigones reforzados con fibras de acero", Inf. la Construccion, 34, 5-17. https://doi.org/10.3989/ic.1982.v34.i342.2079.
  18. Fukuyama, H. and Sugano, S. (2000), "Japanese seismic rehabilitation of concrete buildings after the Hyogoken-Nanbu Earthquake", Cement Concrete Compos., 22, 59-79. https://doi.org/10.1016/S0958-9465(99)00042-6.
  19. Ghobarah, A., Saatcioglu, M. and Nistor, I. (2006), "The impact of the 26 December 2004 earthquake and tsunami on structures and infrastructure", Eng. Struct., 28, 312-326. https://doi.org/10.1016/j.engstruct.2005.09.028.
  20. Hafidi, M., Kharchi, F. and Lefkir, A. (2013), "Neuro-fuzzy optimisation to model the phenomenon of failure by punching of a slab-column connection without shear reinforcement", Struct. Eng. Mech., 47, 679-700. https://doi.org/10.12989/sem.2013.47.5.679.
  21. Hassan, A.M.T., Mahmud, G.H., Jones, S.W. and Whitford, C. (2015), "A new test method for investigating punching shear strength in Ultra High Performance Fibre Reinforced Concrete (UHPFRC) slabs", Compos. Struct., 131, 832-841. https://doi.org/10.1016/j.compstruct.2015.06.044.
  22. Hung, C.C. and Chen, Y.S. (2016), "Innovative ECC jacketing for retrofitting shear-deficient RC members", Constr. Build. Mater., 111, 408-418. https://doi.org/10.1016/j.conbuildmat.2016.02.077.
  23. Hung, C.C. and Chueh, C.Y. (2016), "Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar", Eng. Struct., 122, 108-120. https://doi.org/10.1016/j.engstruct.2016.05.008.
  24. Hung, C.C. and El-Tawil, S. (2011), "Seismic behavior of a coupled wall system with hpfrc materials in critical regions", J. Struct. Eng., 137, 1499-1507. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000393.
  25. Hung, C.C. and Su, Y.F. (2013), "On modeling coupling beams incorporating strain-hardening cement-based composites", Comput. Concrete, 12, 565-583. https://doi.org/10.12989/cac.2013.12.4.565.
  26. Hung, C.C., Yen, W.M. and Yu, K.H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: Experimental investigation and computational analysis", Constr. Build. Mater., 107, 287-298. https://doi.org/10.1016/j.conbuildmat.2016.01.019.
  27. Japan Society of Civil Engineers JSCE-90 (2008), Recommendations for Design and Construction of High Performance Fiber Reinforces Cement Composites with Multiple Fine Cracks (HPFRCC).
  28. Lee, J.Y., Kim, J.Y. and Oh, G.J. (2009), "Strength deterioration of reinforced concrete beam-column joints subjected to cyclic loading", Eng. Struct., 31, 2070-2085. https://doi.org/10.1016/j.engstruct.2009.03.009.
  29. Lequesne, R., Setkit, M., Parra-Montesinos, G.J. and Wight, J.K. (2010), "Seismic detailing and behavior of coupling beams with high-peformance fiber- reinforced concrete", ACI Spec. Publ., 272, 189-204. https://doi.org/10.14359/51664093.
  30. Li, B. and Chua, H.Y.G. (2009), "Seismic performance of strengthened reinforced concrete beam-column joints using FRP composites", J. Struct. Eng., 135, 1177-1190. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:10(1177).
  31. Li, R., Cho, Y.S. and Zhang, S. (2007), "Punching shear behavior of concrete flat plate slab reinforced with carbon fiber reinforced polymer rods", Compos. Part B Eng., 38, 712-719. https://doi.org/10.1016/j.compositesb.2006.07.017.
  32. Loo, Y.C. and Chiang, C.L. (1993), "Methods of punching shear strength analysis of reinforced concrete flat plates-A comparative study", Struct. Eng. Mech., 1, 75-86. https://doi.org/10.12989/sem.1993.1.1.075.
  33. Lu, Y., Liu, Z., Li, S. and Li, W. (2017), "Behavior of steel fibers reinforced self-stressing and self-compacting concrete-filled steel tube subjected to bending", Constr. Build. Mater., 156, 639-651. https://doi.org/10.1016/j.conbuildmat.2017.09.019.
  34. Murillo, C.G. (2004), "Analisis de las causas que dieron origen a los danos estructurales, en las edificaciones del Estado de Puebla, provocados por el sismo del 15 de junio de 1999", Universidad de las Americas Puebla.
  35. Nakata, J.K., Meyer, C.E., Wilshire, H.G., III, J.C.T., Updegrove, W.S., Peterson, D.M., Ellen, S.D., Haugerud, R.A., McLaughlin, R.J., Fisher, G.R. and Diggles, M.F. (1999), "The October 17, 1989, Loma Prieta, California, earthquake: selected photographs", US Geological Survey, Digital Data Series DDS-29, USGS Science for a Changing World.
  36. Navarro-Gregori, J., Mezquida-Alcaraz, E.J., Serna-Ros, P. and Echegaray-Oviedo, J. (2016), "Experimental study on the steel-fibre contribution to concrete shear behaviour", Constr. Build. Mater., 112, 100-111. https://doi.org/10.1016/j.conbuildmat.2016.02.157.
  37. NSR-10 (2010), Reglamento Colombiano de Construccion Sismo Resistente.
  38. Olmati, P., Sagaseta, J., Cormie, D. and Jones, A.E.K. (2017), "Simplified reliability analysis of punching in reinforced concrete flat slab buildings under accidental actions", Eng. Struct., 130, 83-98. https://doi.org/10.1016/j.engstruct.2016.09.061.
  39. Palacios, G. (2015), "S Performance of full-scale ultra-high performance fiber-reinforced concrete column subjected to extreme earthquake-type loading and effect of surface preparation on the cohesion and friction factors of the aashto interface shear equation", The University OF Texas at Arlington.
  40. Realfonzo, R., Napoli, A. and Pinilla, J.G.R. (2014), "Cyclic behavior of RC beam-column joints strengthened with FRP systems", Constr. Build. Mater., 54, 282-297. https://doi.org/10.1016/j.conbuildmat.2013.12.043.
  41. Ruggieri, S., Porco, F. and Uva, G. (2020), "A practical approach for estimating the floor deformability in existing RC buildings: evaluation of the effects in the structural response and seismic fragility", Bull. Earthq. Eng., 18(5), 2083-2113. https://doi.org/10.1007/s10518-019-00774-2
  42. Ruggieri, S., Porco, F. and Uva, G. (2018), "A numerical procedure for modeling the floor deformability in seismic analysis of existing RC buildings", J. Build. Eng., 19, 273-284. https://doi.org/10.1016/j.jobe.2018.05.019.
  43. Ruiz-Pinilla, J.G. (2013), "Estudio experimental de nudos interiores viga-columna de entramados de hormigon armado con detalles no-ductiles, con columnas reforzadas mediante angulares y presillas de acero, sometidos a cargas ciclicas", Universitat Politecnica de Valencia, Valencia, Spain.
  44. Ruiz-Pinilla, J.G., Pallares, F.J., Gimenez, E. and Calderon, P.A. (2014), "Experimental tests on retrofitted RC beam-column joints underdesigned to seismic loads. General approach", Eng. Struct., 59, 702-714. https://doi.org/10.1016/j.engstruct.2013.11.008.
  45. Setia, S. and Kalyani, S. (2015), "Seismic behavior of connections subjected to punching shear in flat-slab systems", J. Eng. Technol., 5, 45. https://doi.org/10.4103/0976-8580.149487.
  46. Stadvridis, A., Koutromanos, I. and Shing, P.B. (2012), "Shake-table tests of a three-story reinforced concrete frame with masonry infill walls", Earthq. Eng. Struct. Dyn., 41, 1089-1108. https://doi.org/10.1002/eqe.1174.
  47. Su, Y., Li, J., Wu, C., Wu, P. and Li, Z.X. (2016), "Effects of steel fibres on dynamic strength of UHPC", Constr. Build. Mater., 114, 708-718. https://doi.org/10.1016/j.conbuildmat.2016.04.007.
  48. Uva, G., Porco, F. and Fiore, A. (2012), "Appraisal of masonry infill walls effect in the seismic response of RC framed buildings: A case study", Eng. Struct., 34, 514-526. https://doi.org/10.1016/j.engstruct.2011.08.043.
  49. Uva, G., Porco, F., Fiore, A. and Ruggieri, S. (2018), "Effects in conventional nonlinear static analysis: evaluation of control node position", Struct., 13, 178-192. https://doi.org/10.1016/j.istruc.2017.12.006.
  50. Yin, H., Teo, W. and Shirai, K. (2017), "Experimental investigation on the behaviour of reinforced concrete slabs strengthened with ultra-high performance concrete", Constr. Build. Mater., 155, 463-474. https://doi.org/10.1016/j.conbuildmat.2017.08.077.
  51. Zhang, F., Wu, C., Zhao, X.L., Heidarpour, A. and Li, Z. (2017), "Experimental and numerical study of blast resistance of square CFDST columns with steel-fibre reinforced concrete", Eng. Struct., 149, 50-63. https://doi.org/10.1016/j.engstruct.2016.06.022.