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Abstract 

 
As a promising technique to support tremendous numbers of Internet of Things devices and 

a variety of applications efficiently, mobile edge computing (MEC) has attracted extensive 
studies recently. In this paper, we consider a MEC-assisted peer-to-peer (P2P) mobile 
communication system where MEC servers are deployed at access points to accelerate the 
communication process between mobile terminals. To capture the tradeoff between the time 
delay and the energy consumption of the system, a cost function is introduced to facilitate the 
optimization of the computation and communication resources. The formulated optimization 
problem is non-convex and is tackled by an iterative block coordinate descent algorithm that 
decouples the original optimization problem into two subproblems and alternately optimizes 
the computation and communication resources. Moreover, the MEC-assisted P2P 
communication system is compared with the conventional P2P communication system, then a 
condition is provided in closed-form expression when the MEC-assisted P2P communication 
system performs better. Simulation results show that the advantage of this system is enhanced 
when the computing capability of the receiver increases whereas it is reduced when the 
computing capability of the transmitter increases. In addition, the performance of this system 
is significantly improved when the signal-to-noise ratio of hop-1 exceeds that of hop-2. 
 
Keywords: Mobile Edge Computing, Computing and Relaying, Block Coordinate 
Descent, P2P Communication 
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1. Introduction 

With the emerging industry of the Internet of Things (IoT), the scope of mobile 
communication services has been extended from inter-personal communication to a web of 
billions of smart devices, e.g., smartphones, sensors, wearable computing devices, laptops, and 
tablets. Owing to the fast growth of interconnected mobile devices industry, mobile data traffic 
explosively increases in the past few years and this trend will continue in the future. According 
to Cisco, monthly Internet traffic is predicted to reach 44 GB per capita by 2022, from 13 GB 
per capita in 2017 [1]. Moreover, new mobile applications such as face recognition, natural 
language processing, augmented reality, etc. have become even more popular, which demand 
not only in high data rate but also in high computational capability [2]. 

To cope with these challenges, mobile cloud computing (MCC) [3] has been widely used 
by sharing the cloud computing capability with mobile devices to break through the bottleneck 
of limited computing resources and reduce the energy consumption. However, the 
performance of MCC is substantially impaired by the long latency and backhaul bandwidth on 
the condition that the Internet cloud is usually far away from mobile devices. To address this 
problem, mobile edge computing (MEC) has attracted great interest recently [4] by offloading 
intensive mobile computation to proximate MEC servers at the edges of cellular networks. 
Compared with MCC, MEC has the advantages of low latency, high bandwidth, real-time 
radio network information, and location awareness. Thus it is widely agreed to be a key 
technology to realize various visions for the next-generation Internet, such as IoT [5], Internet 
of Vehicles [6], and the Tactile Internet [4]. 

The concept of MEC is first proposed by Cisco [7] (which is called fog computing) and 
ESIT [8], which has enabled the emergence of several new applications, such as virtual reality 
[9], intelligent video acceleration [10], remote medical diagnosis [11] and IoT gateway [12]. 
Both academic and industrial communities have conducted extensive researches on several 
key technologies of MEC, such as computation offloading, resource allocation of MEC servers, 
cache- enabled MEC, mobility management, and security/privacy issues in the past few years. 
As one of the key technologies of MEC, computation offloading can enable mobile devices to 
run new sophisticated applications while reducing their energy consumption by allocating 
partial or all of their computation-intensive tasks to the proximate MEC servers. In past few 
years, numerous studies have been made on computation offloading of MEC, including 
offloading strategy design and optimization of computation and communication resources. 

Firstly, the policy of full offloading decision has been widely investigated. Y. Mao in [13] 
considered single user equipment (UE) adopting the techniques of dynamic voltage and 
frequency scaling and energy harvesting to minimize its energy consumption and proposed a 
low-complexity dynamic algorithm based on Lyapunov optimization to reduce the execution 
delay. Another idea was introduced by M. Kamoun in [14]. The author aims to optimize the 
computation offloading decision to minimize the energy consumption of the UE while 
satisfying the execution delay of the applications. The optimal problem was modeled as a 
constrained Markov decision process in [14] and two offloading strategies, i.e., the online 
learning strategy and the offline pre-calculated strategy were proposed. The offline offloading 
strategy shows the superiority over the online strategy in low and medium loads, and it was 
extended to multi-UEs scenarios in [15]. For the same goal in the multi-cell scenario, S. 
Sardellitti in [16] jointly optimized the resources of communication and computation and 
proposed a distributed iterative algorithm to attain local optimal solution using successive 
convex approximation. In addition, the tradeoff of energy consumption and delay was 
investigated by X. Chen [17] in the multi-user and multi-channel scenario, the game theory 
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was used to solve the optimization problem, and a distributed offloading algorithm was 
proposed to achieve Nash equilibrium. 

For another, the case of partial computation offloading, which means there are some parts 
of data in particular applications that cannot be offloaded to MEC servers, was also 
investigated in plenty of works. S. Cao in [18] constructed the partial offloading model for a 
single UE and proposed an optimal adaptive algorithm to reduce the energy consumption of 
the UE and meet the delay requirement as well. Then Y. Zhao in [19] considered the partial 
offloading decision problem for the multi-UEs model and proposed a low-complexity 
algorithm by linear programming to solve the problem. Furthermore, joint optimization of 
offloading decisions and resource allocation were addressed in the literatures. O. Mu𝑛𝑛�oz in 
[20] analyzed the tradeoff between the energy consumption and the execution delay in the 
single UE scenario and indicated that the energy consumption at the UE is inversely correlated 
with the total execution time. The work in [20] was extended to multi-UEs scenarios in [21], 
in which the impact of the data rate and the load on the offloading decision was discussed. The 
optimal resource allocation problem for multi-UEs offloading was studied in two sets of 
systems, orthogonal frequency-division multiple access (OFDMA) and time-division multiple 
access (TDMA) in [22]. Simulation results show that the technology of OFDMA can reduce 
the energy consumption of the UEs for MEC more significantly than TDMA does. The optimal 
resource allocation problem for multi-UEs offloading was also discussed in [23] with upon 
stability of the buffer of the MEC server. The authors proposed an online algorithm based on 
Lyapunov optimization to reduce the power consumption and the execution delay of MEC 
according to UEs priority. Recently, the computation offloading problem was also studied in 
combination with the computation resource allocation in non-orthogonal multiple access 
Communications [24], mobility management of UEs [25], cache-enabled MEC [26], and 
machine learning [27]. To sum up, offloading strategy and optimal resource allocation are still 
the key challenges of MEC to run delay-sensitive and computation-intensive applications 
efficiently. 

Although several excellent works have been proposed on computation offloading in MEC 
networks, all the aforementioned literature focuses on enhancing the computation of mobile 
devices through offloading strategy designation and optimal resource allocation, i.e., reduce 
the cost of computing for mobile devices via the radio channels to MEC servers. What is rarely 
addressed, on the other hand, is using computation resources to accelerate wireless 
communication between MEC servers and mobile devices. Due to the fact that wireless 
communication usually consumes an  amount of energy for data processing tremendously 
larger than mobile computing does, i.e., that the energy required for transmission of a single 
bit is over 1000  times greater than for a single 32 -bit computation [28], we can see a 
considerable boost in energy efficiency with the help of the computing resource of MEC 
systems to maintain the quality of wireless communication. Recently, a notable model of MEC 
relaying networks was proposed by M. Qin in [29], which utilized the computation capability 
of MEC servers to accelerate the peer-to- peer (P2P) transmission process. The authors 
proposed a MEC-assisted computing and relaying scheme to enhance the throughput of 
uncompressed data for mobile P2P communications. The tradeoff between the latency and 
energy consumption during the whole processing was defined by a cost function, and an 
optimal strategy of transmission and compression was derived in closed-form. It is shown that 
the proposed [29] model can significantly reduce the system cost in comparison to the 
conventional P2P communications without MEC resources. The work in [29] gave a notable 
example of using computing to boost communication in MEC, and the optimal solution was 
further discussed in several practical scenarios. This work laid a solid foundation with 
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providing a MEC-assisted computing and relaying model. However, there are still two main 
limitations in this model: 

1. The wireless access channels in this model is too ideal a condition for most of the cases, 
given that the channels are assumed in static flat fading and perfectly known for receivers.  In 
addition, while the impact of the computing factors is mainly under discussion, i.e., the 
compression ratios for the transmission data, this model gives little notice to the impact of 
communication factors, e.g., the data rates and transmit powers. Therefore, the conclusions in 
[29] of this model may be limited to few practical scenarios. 

2. Theoretically, the MEC-assisted relaying model is capable of showing an overall 
advantage, its performance comparing with that of the conventional relaying model. However, 
the comparison of two models is incomplete in the light of the cost of data compression and 
decompression of MEC servers being neglected in the model. Moreover, the condition of when 
the cost of the MEC-assisted relaying model is less than that of the conventional relaying 
model is not provided in analytical results, neither in the general case nor in special cases. 

Motivated by these observations, we adopt a modified approach to simultaneously optimizes 
the main factors of computation and communication phases. To go beyond the original model, 
the influence of both the outage of wireless channels and the computation capability of MEC 
servers are further investigated. The non-convex optimization problem of our model is 
efficiently tackled by an iterative algorithm based on the BCD method. Furthermore, the 
advantage of our model is elaborately discussed with a benchmark of the conventional relaying 
system The main contributions of the paper are summarized as follows. 

1) The MEC-assisted P2P communications between two mobile devices are modeled as a 
modified computing and relaying system with consideration of the impact of the outage of 
wireless channels and data processing of MEC servers on the total cost of the system. The 
factors of both the transmitting phase, (i.e., the data rates and transmit power) and the 
computing phase (i.e., the compression/decompression ratio) are analyzed. It is revealed that 
the optima of the factors of the transmitting phase only depend on the condition of 
communication resources, e.g. channel state and amount of data, while those of the computing 
phase are decided by the condition of both computation and communication resources. 
2) The optimal strategy of our model is challenging, which is shown as a non-convex problem. 

To tackle this problem, firstly we transform it into a block multi-convex problem. Then we 
propose a BCD-based algorithm to optimize the factors of the transmitting and computing 
phases iteratively and provide a local optimum of the original problem. The algorithm proves 
effective and efficient by guaranteeing global convergence to a local optimum with linear 
complexity. 
3) On the basis of the optimal strategy of transmission and compression, we elaborately 

analyze the performance of our model compared with the conventional relaying model which 
is optimized with a similar algorithm. The condition when the MEC-assisted relaying system 
is superior to the conventional relaying system is derived in closed-form, which provides the 
criterion for whether the MEC servers should be adopted to accelerate the communication 
process. Then, we illustrate some special cases to discuss the impact of asymmetric channels 
and asymmetric computing capabilities of UEs on the advantage of the MEC-assisted relaying 
system, which can offer valuable insights into the presetting of the model parameters in 
practical scenarios. 
This paper is structured as follows. Section 2 describes the models of the MEC-assisted/non- 

MEC access P2P relaying systems, based on that a cost function is defined to jointly optimize 
the time delay and energy consumption of these systems. Section 3 constructs the optimal 
problems of these two systems to minimize the cost functions, and two iterative algorithms are 
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proposed to tackle these non-convex problems efficiently. Section 4 investigates the cost gain 
achieved by the MEC-assisted relaying system comparing to the non-MEC relaying system. 
The condition of when the cost performance of the MEC-assisted relaying system is better 
than the non-MEC relaying system is discussed in detail and some special cases related to 
practical scenarios are also analyzed. Section 5 provides the simulation results and further 
discussion. Finally, the conclusions are given in Section 6. 

2. System Model and Performance Metric 

2.1. System Model 

 
(a) The MEC-assisted wireless communication between two mobile users. 

  
(b)The equivalent computing and relaying model between two UEs. 

Fig. 1. The system model  
 

The P2P wireless communication scenario with MEC is shown in Fig. 1(a) as two mobile 
devices exchanging application data, i.e., photo, video and other multi-media content, with 
each other via a wireless communication network in which mobile devices access to the 
wireless network through APs that are connected with the core networks through optical cables. 
The data is first captured and compressed by the mobile transmitter, namely UE1, then 
uploaded to a local AP via a wireless channel. Next, the received data is transmitted to another 
AP which is adjacent to the mobile receiver, namely UE2, through the core networks. Finally, 
the data is downloaded by the receiver from the adjacent AP through a wireless channel and 
decompressed into the original application data. In this scenario we assume that the APs are 
adopted with MEC servers, so that the computing capability of the MEC server can be used to 
accelerate the wireless transmission between the APs and the mobile devices. For this purpose, 
the data received from UE1 is first decompressed and then re-compressed with another ratio 
by the APs before it is transmitted to UE2. 

In order to facilitate the analysis of the above P2P communication, we modeled the wireless 
communication network including the APs as a relay node, R. Therefore, the process of the 
P2P communication can be described as a 2-hops relaying system with communication and 
computation phases, which is shown in Fig. 1(b). Firstly, 𝐷𝐷 bits of original application data is 
collected and compressed with a ratio of 𝜌𝜌1  by UE 1 , and then the compressed data is 
transmitted from UE 1  to R with a data rate of 𝑟𝑟1 . With the help of MEC servers, R 
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decompresses the received data and re-compresses it with a ratio of 𝜌𝜌2 , and then the re-
compressed data is transmitted to UE2 with a data rate of 𝑟𝑟2. Finally, UE2 receives the data 
and decompresses it to obtain the original application data. In this model, the wireless channel 
between UE1 and R, namely ℎ1, and that between R and UE2, namely ℎ2, are assumed to 
obey Rayleigh distribution, i.e., ℎ1 ∼ 𝒞𝒞𝒞𝒞(0,𝜎𝜎12) and ℎ2 ∼ 𝒞𝒞𝒞𝒞(0,𝜎𝜎22). 

In specific, the computation and communication parameters in the relaying system are given 
as follows. As for computation, we describe the computing capability of the UEs and the relay 
node in terms of CPU cycles/s. According to [28], to compress or decompress 1-bit data will 
consume approximately the computing capability as 

𝑈𝑈(𝜌𝜌𝑖𝑖) = 𝜉𝜉𝑖𝑖(𝑒𝑒𝜀𝜀𝜌𝜌𝑖𝑖 − 𝑒𝑒𝜀𝜀),                                                    (1) 
where 𝜀𝜀 and 𝜉𝜉𝑖𝑖 denote constants depending on the compression method, and 𝜌𝜌𝑖𝑖 ∈ �1,𝜌𝜌max,𝑖𝑖� 
denotes the compression or decompression ratio of the UEs and relay node, ∀𝑖𝑖 = 1,2 . 
Meanwhile, it is assumed that in the tow-hops relaying system the wireless channels of two 
hops are perfectly known by the receivers. By referring to the transmit power of hop-𝑖𝑖 as 𝑝𝑝𝑖𝑖, 
the outage probability of hop-𝑖𝑖, which is defined as  

𝑃𝑃𝑖𝑖 = 𝑃𝑃{𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖 < 𝑓𝑓(𝑟𝑟𝑖𝑖)} = 1 − exp �−𝑓𝑓(𝑟𝑟𝑖𝑖)
𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖

� , 𝑖𝑖 = 1,2,           (2) 

where 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥/𝐵𝐵 − 1 with the bandwidth 𝐵𝐵  and 𝑔𝑔𝑖𝑖 = 𝜎𝜎𝑖𝑖2/𝑁𝑁0  with the power spectral 
density of the noise 𝑁𝑁0, 𝑖𝑖 = 1,2. Since the power of relay node is supplied by the power grid, 
which is nearly unconstrained compared to mobile devices, we set 𝑝𝑝2 to fixed value.  

2.2. Performance Metric 
In P2P wireless communications, two key performance metrics are usually discussed: the 

energy consumption and the time of delay. To further investigate the system performance on 
the tradeoff between energy consumption and time delay, we define a cost function that covers 
the two key metrics as follows. 

Definition 1: The cost of transmitting 𝐷𝐷 bits application data from UE1 to UE2 through this 
considered relay system is defined as 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 = 𝛼𝛼1𝐸𝐸1 + 𝛼𝛼2𝐸𝐸2 + 𝛾𝛾𝛾𝛾, where 𝐸𝐸1 and 𝐸𝐸2 denote the 
energy consumptions of UE1 and UE2, respectively, 𝑇𝑇 denotes the total time delay of the 
entire process of communication and computation and 𝛼𝛼1, 𝛼𝛼2, 𝛾𝛾 ∈ [0,1] are scalar weights. 

Note that 𝛼𝛼1, 𝛼𝛼2, 𝛾𝛾 are all variable weights in the definition of the cost function, and the 
tradeoff between the energy consumption and time delay can be modified when we vary them. 
Therefore as long as a particular series of weights are provided, the optimal transmission and 
compression strategy for this tradeoff can be derived according to the cost function. 

Then the expressions of energy consumption and delay are given based on the computation 
and communication process to calculate the cost function. 

Energy consumption: According to the computation and communication scheme, the 
energy cost consists of two main parts: the energy consumption for the compression or 
decompression of data, and that for the transmission or reception of data. As the relay node is 
supplied by the power grid and thus is insensitive to energy consumption, its energy 
consumption is not taken into account in the optimal problem of this model. Hence only the 
energy consumption of the mobile devices are counted in this model. 

Firstly, according to (1), the energy consumption of UE1 to compress 𝐷𝐷 bits of data with a 
ratio of 𝜌𝜌1  is given as 𝐸𝐸𝑐𝑐 = 𝑞𝑞𝑐𝑐𝐷𝐷 ⋅ 𝑈𝑈(𝜌𝜌1) = 𝑞𝑞𝑐𝑐𝐷𝐷𝜉𝜉1(𝑒𝑒𝜀𝜀𝜌𝜌1 − 𝑒𝑒𝜀𝜀) , where 𝑞𝑞𝑐𝑐  (in Joule/cycle) 
denotes the energy consumption for each CPU cycle of UE 1 . Similarly, the energy 
consumption of UE2 to decompress 𝐷𝐷/𝜌𝜌2 bits of data with a ratio of 𝜌𝜌2 is given by 𝐸𝐸𝑑𝑑 =
𝑞𝑞𝑑𝑑𝐷𝐷𝜉𝜉2(𝑒𝑒𝜀𝜀𝜌𝜌2 − 𝑒𝑒𝜀𝜀), where 𝑞𝑞𝑑𝑑 (in Joule/cycle) denotes the energy consumption for each CPU 
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cycle of UE2. 
Secondly, with the outage probability of hop-𝑖𝑖, 𝑃𝑃𝑖𝑖, 𝑖𝑖 = 1,2, the energy consumption of UE1 

in data transmission is given by 𝐸𝐸𝑡𝑡𝑡𝑡 = 𝑝𝑝1𝐷𝐷/{𝜌𝜌1𝑟𝑟1(1 − 𝑃𝑃1)}. In a similar way, the energy 
consumption in UE2 in data reception is given by 𝐸𝐸𝑟𝑟𝑟𝑟 = 𝑞𝑞𝑟𝑟𝑟𝑟𝐷𝐷/{𝜌𝜌2𝑟𝑟2(1− 𝑃𝑃2)}, where 𝑞𝑞𝑟𝑟𝑟𝑟 is 
the energy consumption of UE2 for receiving each bit.  

As above, we obtained roughly the amount of energy consumption. Then we define other 
energy consumption of circuits in the UEs, which are usually regarded as constant values. We 
denoted them as 𝐶𝐶1  and 𝐶𝐶2  for UE1  and UE2 , respectively.  Therefore, the total energy 
consumptions of the UEs are expressed as 

𝐸𝐸1 = 𝐸𝐸𝑐𝑐 + 𝐸𝐸𝑡𝑡𝑡𝑡 + 𝐶𝐶1,                                                        (3) 
𝐸𝐸2 = 𝐸𝐸𝑑𝑑 + 𝐸𝐸𝑟𝑟𝑟𝑟 + 𝐶𝐶2.                                                   (4) 

Delay Time: As for the entire process of computation and communication, the time delay 
includes mainly two parts: one is when data is being compressed or decompressed, and the 
other is when data is being transmitted or received. Noting that the time delay both at the UEs 
and at the relay node is taken into account. 

UE1 for compression of 𝐷𝐷  bits with compression ratio 𝜌𝜌1  is given by 𝑇𝑇𝑐𝑐 = 𝐷𝐷𝜉𝜉1(𝑒𝑒𝜀𝜀𝜌𝜌1 −
𝑒𝑒𝜀𝜀)/𝑓𝑓𝑐𝑐, where 𝑓𝑓𝑐𝑐 (in cycles/s) denotes the CPU frequency of UE1. Similarly, the computing 
delay in UE 2  for decompression of 𝐷𝐷/𝜌𝜌2  bits with a ratio of 𝜌𝜌2  is given by 𝑇𝑇𝑑𝑑 =
𝐷𝐷𝜉𝜉2(𝑒𝑒𝜀𝜀𝜌𝜌2 − 𝑒𝑒𝜀𝜀)/𝑓𝑓𝑑𝑑, where 𝑓𝑓𝑑𝑑 (in cycles/s) is the CPU frequency of UE2.  

Secondly, the computing delay within the relay node is described as 𝑇𝑇𝑟𝑟 = 𝑇𝑇𝑟𝑟1 + 𝑇𝑇𝑟𝑟2, where 
𝑇𝑇𝑟𝑟1  and 𝑇𝑇𝑟𝑟2  represent the delay of decompressing 𝐷𝐷/𝜌𝜌1  bits data with ratio 𝜌𝜌1  and 
compressing 𝐷𝐷  bits data with ratio 𝜌𝜌2 , respectively, i.e., 𝑇𝑇𝑟𝑟1 = 𝐷𝐷𝜉𝜉1(𝑒𝑒𝜀𝜀𝜌𝜌1 − 𝑒𝑒𝜀𝜀)/𝑓𝑓𝑚𝑚 , 𝑇𝑇𝑟𝑟2 =
𝐷𝐷𝜉𝜉2(𝑒𝑒𝜀𝜀𝜌𝜌2 − 𝑒𝑒𝜀𝜀)/𝑓𝑓𝑚𝑚, with 𝑓𝑓𝑚𝑚 (in cycles/s) denoting the equivalent CPU frequency of the relay 
node. Moreover, the transmission delay in hop-1 and hop-2 are given by 𝑇𝑇𝑡𝑡𝑡𝑡 = 𝐷𝐷/{𝜌𝜌1𝑟𝑟1(1−
𝑃𝑃1)} and 𝑇𝑇𝑟𝑟𝑟𝑟 = 𝐷𝐷/{𝜌𝜌2𝑟𝑟2(1 − 𝑃𝑃2)}, respectively  

To conclude, the total time delay of this system is represented as 𝑇𝑇 = 𝑇𝑇𝑐𝑐 + 𝑇𝑇𝑟𝑟1 + 𝑇𝑇𝑡𝑡𝑡𝑡 +
𝑇𝑇𝑟𝑟𝑟𝑟 + 𝑇𝑇𝑑𝑑 + 𝑇𝑇𝑟𝑟2. 

Cost Function: Based on Definition 1, the total cost function for MEC-assisted relay is 
expressed as  

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐴𝐴1(𝑒𝑒𝜀𝜀𝜌𝜌1 − 𝑒𝑒𝜀𝜀) + 𝐴𝐴2(𝑒𝑒𝜀𝜀𝜌𝜌2 − 𝑒𝑒𝜀𝜀) + (𝛼𝛼′1𝑝𝑝1+𝛾𝛾′)
𝜌𝜌1

𝑒𝑒(𝐵𝐵1/𝑝𝑝1) + 𝐴𝐴3
𝜌𝜌2

+ 𝐴𝐴4,,              (5) 

where 𝐴𝐴1 = 𝛼𝛼1𝑞𝑞𝑐𝑐𝐷𝐷𝜉𝜉1 + 𝛾𝛾𝛾𝛾𝜉𝜉1(𝑓𝑓𝑐𝑐−1 + 𝑓𝑓𝑚𝑚−1) , 𝐴𝐴2 = 𝛼𝛼2𝑞𝑞𝑑𝑑𝐷𝐷𝜉𝜉2 + 𝛾𝛾𝛾𝛾𝜉𝜉2�𝑓𝑓𝑑𝑑−1 + 𝑓𝑓𝑚𝑚−1� , 𝛼𝛼′1 =
𝛼𝛼1𝐷𝐷/𝑟𝑟1 , 𝛾𝛾′ = 𝛾𝛾𝛾𝛾/𝑟𝑟1 , 𝐴𝐴3 = (𝛾𝛾 + 𝛼𝛼2𝑞𝑞𝑟𝑟𝑟𝑟)𝑒𝑒(𝐵𝐵2/𝑝𝑝2) ⋅ 𝐷𝐷/𝑟𝑟2 , 𝐴𝐴4 = 𝛼𝛼1𝐶𝐶1 + 𝛼𝛼2𝐶𝐶2 + 𝛾𝛾𝑇𝑇0 , 𝐵𝐵𝑖𝑖 =
𝑓𝑓(𝑟𝑟𝑖𝑖)/𝑔𝑔𝑖𝑖, 𝑖𝑖 = 1,2. 
  The main parameters in (5) are explained as follows. 𝐴𝐴1 is related to the cost consisting of 
energy and delay when the original data are compressed at UE1 and then decompressed at the 
relay node, both with the ratio of 𝜌𝜌1 . 𝐴𝐴2  is related to the cost when the original data are 
compressed at the relay node and then decompressed at UE2, both with the ratio of 𝜌𝜌2. 𝐴𝐴3 is 
related to the cost of the transmission in hop-2, noting that 𝑝𝑝2  is constant and the energy 
consumption of the relay node is not counted. 𝐴𝐴4 denotes the other cost consisting of the 
constant energy consumption of UEs, i.e., 𝐶𝐶1, 𝐶𝐶2, and the constant transmitting delay within 
the relay node, i.e., 𝑇𝑇0. 

In the following expressions, the computing and relaying model adopting a conventional 
relay node without the capability of MEC is considered to compare with the model with the 
MEC-assisted relay node. The total cost function of this model can be defined as a special case 
of 𝐿𝐿(𝜌𝜌1,𝜌𝜌2,𝑝𝑝1)  when 𝜌𝜌1 = 𝜌𝜌2 , except that the delay within relay node is exactly the 
transmission delay between the APs, i.e., 𝑇𝑇0, without the delay of data computing for the MEC-
assisted relay. Therefore, the total cost function for the conventional relay model is given by  
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𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 = (𝐴𝐴1 + 𝐴𝐴2 − 𝐴𝐴0)(𝑒𝑒𝜀𝜀𝜀𝜀 − 𝑒𝑒𝜀𝜀) + (𝛼𝛼′1𝑝𝑝1+𝛾𝛾′)
𝜌𝜌

𝑒𝑒(𝐵𝐵1/𝑝𝑝1) + 𝐴𝐴3
𝜌𝜌

+ 𝐴𝐴4,       (6) 

where 𝐴𝐴0 = 𝛾𝛾𝛾𝛾(𝜉𝜉1 + 𝜉𝜉2)/𝑓𝑓𝑚𝑚 which  is related to the time delay of data computation of MEC-
assisted relay node. 

3. Optimal Strategies 
In this section, the transmission and compression strategies are firstly optimized for the 

MEC-assisted relaying model to minimize the total cost of energy and delay of the system. It 
comes out as a non-convex problem and we decompose this problem into two subproblems of 
which the optimal solutions are obtained with closed-form expressions. Then an iterative 
algorithm is proposed to tackle this problem by using the block coordinate descent (BCD) 
method. In the sequel, the cost of the non-MEC relaying model is also optimized with a similar 
optimal strategy used in the MEC-assisted relaying model. 

3.1. MEC-Assisted Scenario 
To begin with, we regard 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀  as a function of five variables of the computation and 

communication process, i.e., 𝜌𝜌1, 𝜌𝜌2, 𝑟𝑟1, 𝑟𝑟2, 𝑝𝑝1 (𝑝𝑝2 is set as a fixed value because the relay node 
is supplied by the power grid.), and our target is to find the optimal solution to minimize 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀. 
The optimization problem is formulated as follows. 

𝒫𝒫1: 𝑚𝑚𝑚𝑚𝑚𝑚
 𝜌𝜌1,𝜌𝜌2∈[1,+∞)
𝑟𝑟1,𝑟𝑟2∈(0,+∞)

𝑝𝑝1∈�𝑝𝑝1,𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝1,𝑚𝑚𝑚𝑚𝑚𝑚�

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀  (𝜌𝜌1,𝜌𝜌2, 𝑟𝑟1, 𝑟𝑟2,𝑝𝑝1).                                      (7) 

  Unfortunately, this problem is non-convex, which means it is hard to find an optimal solution 
of (7). To tackle this problem, we firstly decompose P1 into two subproblems, i.e., P2 and P3 
as follows, and manage to prove the convexity or equivalent convexity of them. Then we 
propose an algorithm using the BCD method to optimize P2 and P3 iteratively. This algorithm 
can provide a local optimum for P1 with linear complexity and global convergence, which is 
illustrated as follows. 

To begin with, we decompose P1 into 
𝒫𝒫2: 𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟1,𝑟𝑟2∈(0,+∞)
𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟1, 𝑟𝑟2)                                                               (8) 

and 𝒫𝒫3:  𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌1,𝜌𝜌2∈[1,+∞)

𝑝𝑝1∈�𝑝𝑝1,𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝1,𝑚𝑚𝑚𝑚𝑚𝑚�

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝜌𝜌1,𝜌𝜌2,𝑝𝑝1).                                               (9)  

Then, we will show that 𝒫𝒫2 is convex, and that 𝒫𝒫3 is equivalently convex Firstly, it is 
proved in Theorem 1 that 𝒫𝒫2 is a convex problem of both 𝑟𝑟1 and 𝑟𝑟2, and the optimal solution 
of 𝒫𝒫2 is also given by closed-form expressions. 
Theorem 1: Assuming that 𝑝𝑝1 is fixed, the optimal transmission rates of the MEC-assisted 
relaying system is given by  

𝑟𝑟𝑖𝑖∗ = 𝐵𝐵𝐵𝐵(𝜂𝜂𝑖𝑖)
ln2

,                                                                       (10) 

𝑊𝑊(⋅) is Lambert W function and 𝜂𝜂𝑖𝑖 = 𝑝𝑝𝑖𝑖𝜎𝜎𝑖𝑖
2

𝑁𝑁0
, 𝑖𝑖 = 1,2. 

Proof: With considering 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟1, 𝑟𝑟2) as a function of 𝑟𝑟1 and 𝑟𝑟2 , it is easily proved that  
𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟1, 𝑟𝑟2) is convex over 𝑟𝑟1 and 𝑟𝑟2, respectively, and the optimal solution is given by (10). 

Theorem 1 indicates that for each hop, the optimal data rate depends on the SNR. This is 
because when 𝑝𝑝1 and 𝑝𝑝2 are given, the cost of the transmission phase is proportional to the 
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transmission time. Then 𝒫𝒫2 is simplified as a minimization problem of the transmission time 
of two hops. Therefore, 𝑟𝑟𝑖𝑖∗ in Theorem 1 represents the optimal data rate determined by the 
SNR, which leads to the minimal transmission time for each hop. 

However, the subproblem 𝒫𝒫3 is non-convex. To cope with this, we transform 𝒫𝒫3 into 

𝒫𝒫4:  𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌1,𝜌𝜌2∈[1,+∞]

𝑡𝑡∈�𝑝𝑝1,𝑚𝑚𝑚𝑚𝑚𝑚
−1 ,𝑝𝑝1,𝑚𝑚𝑚𝑚𝑚𝑚

−1 �

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝜌𝜌1,𝜌𝜌2, 𝑡𝑡).                                                (11) 

equivalently by replacing 𝑝𝑝1 with 1/𝑡𝑡. We can prove that 𝒫𝒫4 is jointly convex in (𝜌𝜌1,𝜌𝜌2, 𝑡𝑡) 
by (See Appendix A), and the optimal solution of 𝒫𝒫3 is given by the following theorem . 
Theorem 2: The optimum for P3 is given by  

𝜌𝜌1∗ = max �1, 2
𝜀𝜀
𝑊𝑊 �√𝜀𝜀

2
�(𝛼𝛼′1/𝑡𝑡∗+𝛾𝛾′)𝑒𝑒𝐵𝐵1𝑡𝑡∗

𝐴𝐴1
��,                             (12) 

𝜌𝜌2∗ = max �1, 2
𝜀𝜀
𝑊𝑊 �√𝜀𝜀

2 �
𝐴𝐴3
𝐴𝐴2
��,                                                  (13) 

 𝑝𝑝1∗ =

⎩
⎪
⎨

⎪
⎧𝑝𝑝1,min ,          1

𝑡𝑡∗
< 𝑝𝑝1,min 

1
𝑡𝑡∗

,𝑝𝑝1,min ≤
1
𝑡𝑡∗
≤ 𝑝𝑝1,max

𝑝𝑝1,max ,         1
𝑡𝑡∗

> 𝑝𝑝1,max

                                               (14) 

 where 𝑡𝑡∗ = ��𝐵𝐵1𝛼𝛼1(𝐵𝐵1𝛼𝛼1 + 4𝛾𝛾) − 𝐵𝐵1𝛼𝛼1� (2𝐵𝐵1𝛾𝛾)�  and 𝑊𝑊(⋅) is Lambert W function. 
Proof: See Appendix A. 
Theorem 2 presents the optimal transmission and compression strategy of the MEC-assisted 

relaying system. The concise solution reveals that the optimal solution of hop-2, 𝜌𝜌2∗ depends 
on 𝑟𝑟2 only and that hop-1, i.e., 𝑝𝑝1∗ and 𝜌𝜌1∗ depends on 𝑟𝑟1 only, which means the optimization 
of two hops are thoroughly decoupled. Compared with the conventional relaying system, the 
MEC-assisted relaying system breaks through the limit caused by the asymmetry of com-
munication and computing resources of UEs by optimizing the transmission and computation 
strategy for each hop independently, so that an advantage of cost performance may be achieved. 
Remark 1: The variation of 𝜌𝜌2∗ with respect to 𝑟𝑟1 is shown as follows. It is derived from (13) 
that 𝜌𝜌2∗ is a monotonically increasing function of exp��2𝑟𝑟2 𝐵𝐵⁄ − 1� 𝜂𝜂2⁄ �/𝑟𝑟2 , which is convex 
over 𝑟𝑟2 and the optimal solution is 𝑟𝑟2∗ = 𝐵𝐵𝐵𝐵(𝜂𝜂2)/ln2.. Therefore, 𝜌𝜌2∗ is convex over 𝑟𝑟2 and it 
is minimized when 𝑟𝑟2 = 𝑟𝑟2∗. As has been discussed in Theorem 1, the transmission time of hop-
2  is also minimized when 𝑟𝑟2 = 𝑟𝑟2∗  as well. This indicates that for hop-2 , the cost of the 
transmission phase and computation phase are reduced simultaneously with the increase of 
𝑟𝑟2 when 𝑟𝑟2 < 𝑟𝑟2∗ and both of them are minimized when 𝑟𝑟2 = 𝑟𝑟2∗. 
 Remark 2: The variation of 𝜌𝜌1∗ and 𝑝𝑝1∗ with respect to 𝑟𝑟1 is shown as follows. Firstly, 𝜌𝜌1∗ is 
convex over 𝑟𝑟1 and achieves the minimum value when 𝑟𝑟1 = 𝑟𝑟1∗. Meanwhile, it is proved that 𝑝𝑝1∗ 
is positively correlated with 𝑟𝑟1  from (14), which makes the correlation between 𝜌𝜌1∗  and 𝑟𝑟1 
intricate because 𝜌𝜌1∗ is also affected by 𝑝𝑝1∗ and the effect is uncertain. This indicates that when 
𝑟𝑟1 grows, the corresponding value of 𝜌𝜌1∗ needs to increase along with it, in case that the cost 
of transmission phase rises rapidly due to the increase of outage errors. Moreover, it is proved 
that the value of 𝜌𝜌1∗ is influenced by 𝑝𝑝1∗ and 𝑟𝑟1, but not vice versa . 

So far, we have proved that as for a non-convex optimal problem, 𝒫𝒫1 can be decomposed 
into two subproblems, 𝒫𝒫2 and 𝒫𝒫3, which are convex or equivalently convex, having closed-
forme solutions both. Also, we notice that the optimal solution of 𝒫𝒫2 and 𝒫𝒫3 interacts with 
each other. Therefore the problem 𝒫𝒫1 is solved by optimizing the two subproblems iteratively. 
With a BCD method, an algorithm (JETMRS) for 𝒫𝒫1  is proposed as follows, and the 
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complexity and convergence of which will be analyzed in the next subsection.  
Algorithm 1 Joint optimization algorithm for Energy consumption and Time delay of MEC-

assisted Relaying System (JETMRS) 
 

Initialization: 
Define the tolerance of accuracy 𝛿𝛿 and the maximum number of iterations 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚; 
Initialize the scalar weights of the cost function, i.e., 𝛼𝛼1, 𝛼𝛼2, 𝛾𝛾, and the parameters of the MEC-
assisted system, 𝑝𝑝2, 𝑞𝑞𝑐𝑐, 𝑞𝑞𝑑𝑑, 𝑓𝑓𝑚𝑚, 𝑓𝑓𝑐𝑐, 𝑓𝑓𝑑𝑑, ect.; 
Set the iteration number 𝑖𝑖 = 0; 
1: Calculate 𝑟𝑟2𝜌𝜌1

(𝑖𝑖) according to (10), set 𝑟𝑟1
(𝑖𝑖) = 𝑟𝑟2; 

2: Calculate 𝜌𝜌2 according to (13); 
3: repeat 
4: Calculate 𝑝𝑝1

(𝑖𝑖) and 𝜌𝜌1
(𝑖𝑖) according to (14) and (12), respectively; 

5: Calculate 𝑟𝑟1
(𝑖𝑖+1) according to (10); 

6: Update the iteration number: 𝑖𝑖 ← 𝑖𝑖 + 1; 
7: until �𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 �𝜌𝜌1

(𝑖𝑖),𝑝𝑝1
(𝑖𝑖), 𝑟𝑟1

(𝑖𝑖+1)� − 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 �𝜌𝜌1
(𝑖𝑖−1),𝑝𝑝1

(𝑖𝑖−1), 𝑟𝑟1
(𝑖𝑖)�� ≤ 𝛿𝛿 or reaching the maximum 

iteration number. 

3.2. Non-MEC Scenario Scenarios 
  In this subsection, we investigate the conventional relaying model without adopting MEC 
servers, of which the total cost function is optimized similarly with the optimization of the 
MEC-assisted relaying system, and then the performance of the two systems are compared. 

 Firstly, the optimization problem for the non-MEC relaying system is formulated as 
𝒫𝒫5: 𝑚𝑚𝑚𝑚𝑚𝑚

 𝜌𝜌,∈[1,+∞)
𝑟𝑟1,𝑟𝑟2∈(0,+∞)

𝑝𝑝1∈�𝑝𝑝1,𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝1,𝑚𝑚𝑚𝑚𝑚𝑚�

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛(𝜌𝜌, 𝑟𝑟1, 𝑟𝑟2,𝑝𝑝1).                                          (15) 

It can be proved that 𝒫𝒫5 can be optimized with a similar method with that of 𝒫𝒫1, therefore the 
optima of 𝑟𝑟𝑖𝑖 are given by Theorem 1, and 𝜌𝜌∗ and 𝑝𝑝1∗ are derived by the following theorem. 
Theorem 3: The optimum of 𝒫𝒫7 is given by   

𝜌𝜌∗ = max�1, 2
𝜀𝜀
𝑊𝑊�√𝜀𝜀

2
��𝛼𝛼′

1
/𝑡𝑡∗+𝛾𝛾′�𝑒𝑒𝐵𝐵1𝑡𝑡∗+𝐴𝐴3
(𝐴𝐴1+𝐴𝐴2−𝐴𝐴0) ��，                              (16) 

𝑝𝑝1∗ =

⎩
⎪
⎨

⎪
⎧𝑝𝑝1,min ,          1

𝑡𝑡∗
< 𝑝𝑝1,min 

1
𝑡𝑡∗

,𝑝𝑝1,min ≤
1
𝑡𝑡∗
≤ 𝑝𝑝1,max

𝑝𝑝1,max ,         1
𝑡𝑡∗

> 𝑝𝑝1,max

,                                         (17) 

 where  𝑡𝑡∗ = ��𝐵𝐵1𝛼𝛼1(𝐵𝐵1𝛼𝛼1 + 4𝛾𝛾) − 𝐵𝐵1𝛼𝛼1� (2𝐵𝐵1𝛾𝛾)� . 
Proof: Refer to the proof of Theorem 2. 

Based on the results of Theorems 1 and 3, a BCD-based algorithm is also proposed to 
optimize 𝒫𝒫5 iteratively. This algorithm, namely JETCRS, is given as follows. 

Algorithm 2 Joint optimization algorithm for Energy consumption and Time delay of 
Conventional Relaying System (JETCRS)  
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Initialization: 
Define the tolerance of accuracy 𝛿𝛿 and the maximum number of iterations 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚; 
Initialize the scalar weights of the cost function, i.e., 𝛼𝛼1, 𝛼𝛼2, 𝛾𝛾, and the parameters of the MEC-
assisted system, 𝑝𝑝2, 𝑞𝑞𝑐𝑐, 𝑞𝑞𝑑𝑑, 𝑓𝑓𝑚𝑚, 𝑓𝑓𝑐𝑐, 𝑓𝑓𝑑𝑑, ect.; 
Set the iteration number 𝑖𝑖 = 0; 
1: Calculate 𝑟𝑟2𝜌𝜌

(𝑖𝑖) according to (10), set 𝑟𝑟1
(𝑖𝑖) = 𝑟𝑟2; 

2:  repeat 
3: Calculate 𝑝𝑝1

(𝑖𝑖) and 𝜌𝜌(𝑖𝑖) according to (20) and (19), respectively; 
4: Calculate 𝑟𝑟1

(𝑖𝑖+1) according to (10); 
5: Update the iteration number: 𝑖𝑖 ← 𝑖𝑖 + 1; 
6: until �𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 �𝜌𝜌1

(𝑖𝑖),𝑝𝑝1
(𝑖𝑖), 𝑟𝑟1

(𝑖𝑖+1)� − 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 �𝜌𝜌1
(𝑖𝑖−1),𝑝𝑝1

(𝑖𝑖−1), 𝑟𝑟1
(𝑖𝑖)�� ≤ 𝛿𝛿 or reaching the maximum 

iteration number. 
Remark 3: It is observed that the optimal solution of 𝑝𝑝1  and 𝑟𝑟1  in the non-MEC relaying 
system are the same as that in the MEC relaying system under the identical fading channel of 
hop-1 . This means that the optimal transmit power for UE 1  and the optimal value of 
transmission data rate of hop-1 are only influenced by the channel fading, whether the relay 
node has the capability of MEC or not. Besides, the factor of the optimal strategy influenced 
by the relay type is the compression ratio of data, which makes a difference not only on the 
cost during the computation phase but also on that in the transmission phase because of the 
changing of transmitting time. Different from the MEC relaying system, the conventional 
relaying system has only one compression ratio, 𝜌𝜌, through the two hops, which narrows the 
space for optimization of the system performance and this is shown by the following corollary. 
Corollary 1.  Assuming 𝑓𝑓𝑚𝑚 ≫ max{𝑓𝑓𝑐𝑐,𝑓𝑓𝑑𝑑}, we have two conclusions from Theorem 2 and 3 as 
follows. 
1. 𝜌𝜌1∗ and 𝜌𝜌2∗ are positively correlated to 𝑓𝑓𝑐𝑐 and 𝑓𝑓𝑑𝑑, respectively. 
2. min{𝜌𝜌1∗,𝜌𝜌2∗} ≤ 𝜌𝜌∗ ≤ max{𝜌𝜌1∗,𝜌𝜌2∗}, and the equality holds only when 𝜌𝜌∗ = 𝜌𝜌1∗ = 𝜌𝜌2∗ = 1. 

Proof: First, it is easily observed that 𝜌𝜌1∗ and 𝜌𝜌2∗ are negatively correlated with 𝐴𝐴1 and 𝐴𝐴2, 
respectively, as 𝑊𝑊(𝑥𝑥)  monotonically increases with 𝑥𝑥  in domain ℛ+ . Then, when 𝑓𝑓𝑚𝑚 ≫
max{𝑓𝑓𝑐𝑐,𝑓𝑓𝑑𝑑}, 𝐴𝐴1 and 𝐴𝐴2 are positively correlated with 𝑓𝑓𝑐𝑐−1 and 𝑓𝑓𝑑𝑑−1, respectively, and thus the 
first conclusion is obtained. 

Next, with comparing the optimal compression ratios of the two system which are given by 
Theorem 2 and 3, it is easily observed that 𝜌𝜌∗ = 𝜌𝜌1∗ = 𝜌𝜌2∗  holds only if 𝜌𝜌∗ = 𝜌𝜌1∗ = 𝜌𝜌2∗ = 1 
based on the monotonically increasing property of 𝑊𝑊(𝑥𝑥). Moreover, if 𝑓𝑓𝑚𝑚 ≫ max{𝑓𝑓𝑐𝑐 ,𝑓𝑓𝑑𝑑}, we 
obtain 𝐴𝐴1 + 𝐴𝐴2 ≫ 𝐴𝐴0 and therefore 

  𝜌𝜌∗ ≈ max�1, 2
𝜀𝜀
�√𝜀𝜀
2
��𝛼𝛼′

1
/𝑡𝑡+𝛾𝛾′�𝑒𝑒𝐵𝐵1𝑡𝑡∗+𝐴𝐴3

(𝐴𝐴1+𝐴𝐴2) ��.                                        (18) 

In this case, it is observed that 

min �(𝛼𝛼′1/𝑡𝑡+𝛾𝛾′)𝑒𝑒𝐵𝐵1𝑡𝑡
∗

𝐴𝐴1
, 𝐴𝐴3
𝐴𝐴2
� ≤ (𝛼𝛼′1/𝑡𝑡+𝛾𝛾′)𝑒𝑒𝐵𝐵1𝑡𝑡

∗
+𝐴𝐴3

(𝐴𝐴1+𝐴𝐴2) ≤ max �(𝛼𝛼′1/𝑡𝑡+𝛾𝛾′)𝑒𝑒𝐵𝐵1𝑡𝑡
∗

𝐴𝐴1
, 𝐴𝐴3
𝐴𝐴2
�.            (19) 

Again, with using the monotonically increasing property of 𝑊𝑊(𝑥𝑥) in domain ℛ+, the second 
conclusion of Corollary 1 is proved. 
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Remark 4: Corollary 1 considers the scenarios when the MEC servers is far more capable of 
computation than the UEs, i.e., 𝑓𝑓𝑚𝑚 ≫ max{𝑓𝑓𝑐𝑐,𝑓𝑓𝑑𝑑}, which are the most cases in practical 
scenarios. For these scenarios, the physical meaning of the two conclusions can be explained 
as follows. The first conclusion of Corollary 1 indicates that the optimal compression rate in 
each hop is bottlenecked by the computing capability of the corresponding UE. It is easily 
understood that the shortage of the computing resource in each hop decides the upper limit of 
maximal compression rate that the optimal strategy can achieve. 

The second conclusion of Corollary 1 reveals that 𝜌𝜌∗ of non-MEC system that optimize the 
performance of two hops as a whole is approximately between 𝜌𝜌1∗ and 𝜌𝜌2∗ of MEC-assisted 
system that optimize them separately. Thus, it is presumed that the gap between 𝜌𝜌1∗ and 𝜌𝜌2∗ 
being greater, the advantage of the MEC-assisted system over the non-MEC system will be 
more significant and vice versa. 

3.3. The Convergency and Complexity of Two Algorithms 
Note that 𝒫𝒫1 is non-convex, therefore there is no guarantee to obtain a global optimum of 

𝒫𝒫1. However, it is proved that 𝒫𝒫1 is equivalent to a block multi-convex problem, of which a 
local optimal solution (a critical point) can be obtained with the BCD method algorithm, 
namely JETMRS. Moreover, the JETMRS algorithm is proved to be globally convergent to a 
local optimum. Similarly, it is proved that 𝒫𝒫5 is equivalent to a block multi-convex problem. 
Therefore, the JETCRS algorithm can guarantee a local optimum of 𝒫𝒫5  with global 
convergence . 

The overall computational complexity of algorithms of JETMRS and JETCRS are both 
determined by the number and complexity of iterations which are derived as follows. The 
JETMRS algorithm consists of two iterative procedures, optimizing 𝑟𝑟1 when fixing 𝜌𝜌1 and 𝑝𝑝1 
and vice versa. Since the optimal solution of 𝑟𝑟1 , 𝜌𝜌1  and 𝑝𝑝1  are all given in closed-form 
expressions. The complexity of calculating them in a single loop is 𝑂𝑂(1) . Hence the 
computation complexity of the JETMRS algorithm is 𝑂𝑂(𝑇𝑇1), where 𝑇𝑇1 denotes the iterations 
of the JETMRS algorithm. Similarly, the complexity of the JETCRS algorithm is 𝑂𝑂(𝑇𝑇2), 
where 𝑇𝑇2 denotes the number of iterations of it. Therefore, these two algorithms both have 
linear computation complexity, which is efficient to be applied in practical scenarios. 

4. Performance Analysis 
In this section, we further investigate the performance of the MEC-assisted system including 

comparison with the non-MEC system. Firstly, we evaluate the superiority of MEC-assisted 
system from the cost difference between the two systems to obtain the condition of when 
MEC-assisted relay is more preferable than conventional relay in saving the total cost. In 
addition, some special cases are shown to give some physical insight for practical scenarios.  

4.1 Cost Difference 
As has been discussed, the MEC-assisted system achieve better performance than the non-

MEC system by decoupling the compression data rates of the hops with the assistance of MEC 
servers. However, the cost of the MEC-assisted system including the time delay of data 
processing and transmitting within MEC servers should be also counted. To carefully examine 
the advantage of the MEC-assisted system, we define the cost difference between the non-
MEC and MEC-assisted system as 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛(𝜌𝜌∗,𝑝𝑝1∗) − 𝐿𝐿(𝜌𝜌1∗,𝜌𝜌2∗,𝑝𝑝1∗), where 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛(𝜌𝜌∗,𝑝𝑝1∗) 
and 𝐿𝐿(𝜌𝜌1∗,𝜌𝜌2∗,𝑝𝑝1∗)  are both optimized by the proposed algorithms under the same fading 
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channels and energy status. 
It is easily observed that 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗  indicates the performance gain of the MEC-assisted system 

over the non-MEC system with their optimal solutions. status. When 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ > 0, it means that 
the MEC-assisted system saves more energy-delay cost in this communication-and-computing 
process than the non-MEC system does and vice versa. Moreover, if 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 0, it means that 
the two relaying systems are equal in terms of the total cost in their optimal status. However, 
it is obvious that conventional relaying is preferable to the MEC-assisted relaying when 
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 0, as the latter consumes extra computing resources of MEC servers. To compare the 
two relaying systems in detail with 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ , we show the following theorem. 

Theorem 4: The condition of whether the non-MEC or MEC-assisted relaying system is 
better for saving the total cost is given by 

�
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ > 0,  when 𝜌𝜌∗ < 𝑓𝑓𝑑𝑑(𝜌𝜌1∗,𝜌𝜌2∗)
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 0,  when 𝜌𝜌∗ = 𝑓𝑓𝑑𝑑(𝜌𝜌1∗,𝜌𝜌2∗)
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ < 0,  when 𝜌𝜌∗ > 𝑓𝑓𝑑𝑑(𝜌𝜌1∗,𝜌𝜌2∗)

,                                          (20) 

where 𝑓𝑓𝑑𝑑(𝜌𝜌1∗,𝜌𝜌2∗) =
𝜀𝜀𝑏𝑏1+�𝑏𝑏1�(𝑐𝑐1(2+𝜀𝜀𝜌𝜌1∗)2−4𝐴𝐴0𝑒𝑒𝜀𝜀𝜀𝜀(𝜌𝜌1∗)2)(𝜌𝜌2∗)2+𝐴𝐴3(𝜌𝜌1∗)2(2+𝜀𝜀𝜌𝜌2∗)2�

2�(𝑐𝑐1+𝑐𝑐1𝜀𝜀𝜌𝜌1∗−𝐴𝐴0𝑒𝑒𝜀𝜀𝜀𝜀(𝜌𝜌1∗)2)(𝜌𝜌2∗)2+𝐴𝐴3(𝜌𝜌1∗)2(1+𝜀𝜀𝜌𝜌2∗)�
                             (21) 

with 𝑏𝑏1 = (𝐴𝐴3 + 𝑐𝑐1)(𝜌𝜌1∗)2(𝜌𝜌2∗)2 and 𝑐𝑐1 = �𝛼𝛼′1𝑝𝑝1
∗ + 𝛾𝛾′�𝑒𝑒(𝐵𝐵1/𝑝𝑝1∗). 

Proof: To begin with, the expression of cost difference is given as 

𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 𝐴𝐴1�𝑒𝑒𝜀𝜀𝜌𝜌
∗ − 𝑒𝑒𝜀𝜀𝜌𝜌1∗� + 𝐴𝐴2�𝑒𝑒𝜀𝜀𝜌𝜌

∗ − 𝑒𝑒𝜀𝜀𝜌𝜌2∗� + 𝑐𝑐1 �
1
𝜌𝜌∗
− 1

𝜌𝜌1
∗� + 𝐴𝐴3 �

1
𝜌𝜌∗
− 1

𝜌𝜌2
∗� − 𝐴𝐴0�𝑒𝑒𝜀𝜀𝜌𝜌

∗ − 𝑒𝑒𝜀𝜀�,        (22) 

where 𝑐𝑐1 = (𝛼𝛼′1𝑝𝑝1∗ + 𝛾𝛾′)𝑒𝑒(𝐵𝐵1/𝑝𝑝1∗). Without loss of generality, we assume 𝜌𝜌∗,𝜌𝜌1∗,𝜌𝜌2∗ > 1 and 

therefore obtain 𝜌𝜌∗ = 2
𝜀𝜀
𝑊𝑊 �√𝜀𝜀

2 �
𝑐𝑐1+𝐴𝐴3

(𝐴𝐴1+𝐴𝐴2−𝐴𝐴0)� , 𝜌𝜌1∗ = 2
𝜀𝜀
𝑊𝑊 �√𝜀𝜀

2 �
𝑐𝑐1
𝐴𝐴1
�  and 𝜌𝜌2∗ = 2

𝜀𝜀
𝑊𝑊 �√𝜀𝜀

2 �
𝐴𝐴3
𝐴𝐴2
� . 

Then with using the property of Lambert W function, i.e., 𝑥𝑥 = 𝑊𝑊(𝑥𝑥)𝑒𝑒𝑊𝑊(𝑥𝑥), we obtain 𝑒𝑒𝜀𝜀𝜌𝜌1∗ =
𝑐𝑐1
𝜀𝜀𝐴𝐴1

⋅ (𝜌𝜌1∗)−2 , 𝑒𝑒𝜀𝜀𝜌𝜌2∗ = 𝐴𝐴3
𝜀𝜀𝐴𝐴2

⋅ (𝜌𝜌2∗)−2  and 𝑒𝑒𝜀𝜀𝜌𝜌∗ = 𝑐𝑐1+𝐴𝐴3
𝜀𝜀(𝐴𝐴1+𝐴𝐴2−𝐴𝐴0) ⋅ (𝜌𝜌∗)−2 . We substitute the above 

equations into (22) and therefore obtain 
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 𝑐𝑐1 �

1
𝜌𝜌∗
− 1

𝜌𝜌1∗
� �1 + 1

𝜀𝜀𝜌𝜌∗
+ 1

𝜀𝜀𝜌𝜌1∗
� + 𝐴𝐴3 �

1
𝜌𝜌∗
− 1

𝜌𝜌2∗
� �1 + 1

𝜀𝜀𝜌𝜌∗
+ 1

𝜀𝜀𝜌𝜌2∗
�+ 𝐴𝐴0𝑒𝑒𝜀𝜀 .          (23) 

Next, by solving the equation of 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 0, we obtain 𝜌𝜌∗ = 𝑓𝑓𝑑𝑑(𝜌𝜌1∗,𝜌𝜌2∗). Regarding 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗  in 
(23) as a function of 𝜌𝜌∗ , which monotonically decreases with 𝜌𝜌∗ , therefore Theorem 4 is 
proved. 

This theorem reveals the condition of whether the MEC-assisted relaying system is superior 
to the conventional relaying system or not in terms of the energy-delay cost. We note that the 
closed-form expression of the condition is influenced by many factors, i.e., 𝜌𝜌∗,𝜌𝜌1∗,𝜌𝜌2∗, 𝐴𝐴0, 𝐴𝐴3 
and 𝑐𝑐1, and it is too complicated to analyze the effect of any single factor because these factors 
interact with each other constantly. However, by calculating the numerical results of (21), 
Theorem 4 can provide a criterion for the choice between the two systems in practical scenarios. 

  As has been discussed, it is hard to track the effect of any single factor on the cost 
difference because all factors affect one another mutually. Therefore we need to consider some 
special cases and further investigations on the cost difference are shown in the following 
subsection. 
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4.2 Special Cases 
It is obvious that if the computing resources of UEs were sufficient and the channels in the 

relaying model were ideal, there would be no need for MEC servers. Hence we should consider 
what condition will allow the MEC-assisted system to outperform the non-MEC system in the 
special case when the computing or communication resources are poor. For the facility of 
analysis several extreme conditions are assumed in the following special cases. 
• Poor Computing in UE1 or UE2 

Consider the case when the computing capability of UE1 or UE2 is extremely insufficient, 
which forces the compression or decompression rate of the user to be 1, i.e., 𝜌𝜌∗ = 𝜌𝜌1∗ = 1 or 
𝜌𝜌∗ = 𝜌𝜌2∗ = 1. For these extreme cases, we obtain the following corollary. 
Corollary 2: In the case of the poor computing capability of UE1 or UE2, i.e., 𝜌𝜌∗ = 𝜌𝜌1∗ = 1 
or 𝜌𝜌∗ = 𝜌𝜌2∗ = 1, the MEC-assisted system is always superior to the non-MEC system when 
𝜌𝜌2∗ > 1 or 𝜌𝜌1∗ > 1 respectively, which is 

�
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ > 0,  when 𝜌𝜌∗ = 𝜌𝜌1∗ = 1 and 𝜌𝜌2∗ > 1
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ > 0,  when 𝜌𝜌∗ = 𝜌𝜌2∗ = 1 and 𝜌𝜌1∗ > 1.                                  (24) 

Moreover, it is observed that 𝜌𝜌2∗ > 1 is equivalent to 𝐴𝐴3 𝐴𝐴2⁄ > 𝜀𝜀𝑒𝑒𝜀𝜀 and 𝜌𝜌1∗ > 1 is equivalent 
to 𝑐𝑐1 𝐴𝐴1⁄ > 𝜀𝜀𝑒𝑒𝜀𝜀. 
Proof: Firstly, we rewrite the cost different of the special cases as 

𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = �
(𝐴𝐴2𝑒𝑒𝜀𝜀+𝐴𝐴3)− �𝐴𝐴2𝑒𝑒𝜀𝜀𝜌𝜌2

∗ +𝐴𝐴3 𝜌𝜌2∗⁄ �,𝜌𝜌∗ = 𝜌𝜌1∗ = 1
(𝐴𝐴1𝑒𝑒𝜀𝜀 + 𝑐𝑐1) − �𝐴𝐴1𝑒𝑒𝜀𝜀𝜌𝜌1

∗ +𝑐𝑐1 𝜌𝜌1∗⁄ �,𝜌𝜌∗ = 𝜌𝜌2∗ = 1
.                         (25) 

  Note that 𝜌𝜌1∗ is the optimum of the convex function 𝐴𝐴1𝑒𝑒𝜀𝜀𝜀𝜀 + 𝑐𝑐1 𝜌𝜌⁄  when 𝜌𝜌1∗ > 1, and it is the 
same with 𝜌𝜌2∗ to 𝐴𝐴2𝑒𝑒𝜀𝜀𝜀𝜀 + 𝐴𝐴3 𝜌𝜌⁄  when 𝜌𝜌2∗ > 1. Therefore it is easily obtained that 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ > 0 
for the cases of 𝜌𝜌∗ = 𝜌𝜌2∗ = 1 or 𝜌𝜌∗ = 𝜌𝜌2∗ = 1.  
Remark 5: It is easily understood that the MEC-assisted system has notable advantages over 
the non-MEC system when one UE is in lack of computing capability. This is because the cost 
gain from resource optimizing of the non-MEC system is restricted to 0 due to the poor 
computing capability of one UE whilst the MEC-assisted system only loses them in one hop. 
Therefore the MEC-assisted system is a better choice, i.e., 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ > 0 in these special cases, 
as long as the optimal compression rate of another hop is greater than 1 under the condition 
given by Corollary 2. As has been discussed before, 𝐴𝐴1 and 𝐴𝐴2 are related to the energy-delay 
cost of the computation phase while 𝑐𝑐1 and 𝐴𝐴3 are related to that of the transmission phase. 
Then  𝐴𝐴3 𝐴𝐴2⁄ > 𝜀𝜀𝑒𝑒𝜀𝜀 and 𝑐𝑐1 𝐴𝐴1⁄ > 𝜀𝜀𝑒𝑒𝜀𝜀 indicate that when the cost ratio of the transmission 
phase over the computation phase in one hop is larger than a given threshold, i.e. 𝜀𝜀𝑒𝑒𝜀𝜀, it is 
feasible to use the computing resources of the MEC servers to alleviate the cost of 
communication. From these special cases, we propose a reasonable deduction that the 
advantage of the MEC-assisted system is enhanced when the disparity between the computing 
source of two UEs enlarges, which will be verified by the simulation results. 
• Poor Communication in hop-1 or hop-2 

Consider the case when the wireless channel of hop-1 or hop-2 experiences a deep fade so 
that the transmission data of the corresponding hop is compressed/decompressed with the 
maximum ratio, i.e., 𝜌𝜌∗ = 𝜌𝜌1∗ = 𝜌𝜌1,max  or 𝜌𝜌∗ = 𝜌𝜌2∗ = 𝜌𝜌2,max . For these extreme cases, we 
obtain the following corollary. 
Corollary 4: In the case of the channel of hop-1 or hop-2 in deep fading, the condition of 
whether the MEC-assisted system or the non-MEC system is better in the total cost is given as 
follows. When 𝜌𝜌∗ = 𝜌𝜌1∗ = 𝜌𝜌1,max, we obtain 
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⎩
⎨

⎧𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∗ > 0, when 𝜌𝜌2∗ > �𝐴𝐴3𝜀𝜀 + �𝐴𝐴3𝜀𝜀(4𝑎𝑎2 + 𝐴𝐴3𝜀𝜀)� (2𝑎𝑎2𝜀𝜀)�

𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 0, when 𝜌𝜌2∗ = �𝐴𝐴3𝜀𝜀 +�𝐴𝐴3𝜀𝜀(4𝑎𝑎2 + 𝐴𝐴3𝜀𝜀)� (2𝑎𝑎2𝜀𝜀)�

𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ < 0, when 𝜌𝜌2∗ < �𝐴𝐴3𝜀𝜀 + �𝐴𝐴3𝜀𝜀(4𝑎𝑎2 + 𝐴𝐴3𝜀𝜀)� (2𝑎𝑎2𝜀𝜀)�

,                        (26) 

where 𝑎𝑎2 = 𝐴𝐴2𝑒𝑒𝜀𝜀𝜌𝜌2,max + 𝐴𝐴3 𝜌𝜌2,max⁄ − 𝐴𝐴0(𝑒𝑒𝜀𝜀𝜌𝜌2,max − 𝑒𝑒𝜀𝜀). 
When𝜌𝜌∗ = 𝜌𝜌2∗ = 𝜌𝜌2,max, we obtain 

⎩
⎪
⎨

⎪
⎧𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∗ > 0, when 𝜌𝜌1∗ > �𝑐𝑐1𝜀𝜀 + �𝑐𝑐1𝜀𝜀(4𝑎𝑎1 + 𝑐𝑐1𝜀𝜀)� (2𝑎𝑎1𝜀𝜀)�

𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 0, when 𝜌𝜌1∗ = �𝑐𝑐1𝜀𝜀 + �𝑐𝑐1𝜀𝜀(4𝑎𝑎1 + 𝑐𝑐1𝜀𝜀)� (2𝑎𝑎1𝜀𝜀)�

𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ < 0, when 𝜌𝜌1∗ < �𝑐𝑐1𝜀𝜀 + �𝑐𝑐1𝜀𝜀(4𝑎𝑎1 + 𝑐𝑐1𝜀𝜀)� (2𝑎𝑎1𝜀𝜀)�

,                      (27) 

where 𝑎𝑎1 = 𝐴𝐴1𝑒𝑒𝜀𝜀𝜌𝜌1,max + 𝑐𝑐1 𝜌𝜌1,max⁄ − 𝐴𝐴0(𝑒𝑒𝜀𝜀𝜌𝜌1,max − 𝑒𝑒𝜀𝜀). 
Proof: Firstly, we represent the cost difference as 
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 𝐴𝐴2�𝑒𝑒𝜀𝜀𝜌𝜌1,max − 𝑒𝑒𝜀𝜀𝜌𝜌2∗� + 𝐴𝐴3 �

1
𝜌𝜌1,max

− 1
𝜌𝜌2∗
� − 𝐴𝐴0(𝑒𝑒𝜀𝜀𝜌𝜌1,max − 𝑒𝑒𝜀𝜀),   𝜌𝜌∗ = 𝜌𝜌1∗ = 𝜌𝜌1,max,   (28) 

or 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 𝐴𝐴1�𝑒𝑒𝜀𝜀𝜌𝜌2,max − 𝑒𝑒𝜀𝜀𝜌𝜌1∗� + 𝑐𝑐1 �
1

𝜌𝜌2,max
− 1

𝜌𝜌1∗
� − 𝐴𝐴0(𝑒𝑒𝜀𝜀𝜌𝜌2,max − 𝑒𝑒𝜀𝜀), 𝜌𝜌∗ = 𝜌𝜌2∗ = 𝜌𝜌2,max.(29) 

Then, we substitute 𝑒𝑒𝜀𝜀𝜌𝜌2∗ = 𝐴𝐴3 [𝜀𝜀𝜀𝜀2(𝜌𝜌2∗)2]⁄  into (28) and obtain 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = − 𝐴𝐴3
𝜀𝜀(𝜌𝜌2∗)2 −

𝐴𝐴3
𝜌𝜌2∗

+ 𝑎𝑎2 
with 𝑎𝑎2 = 𝐴𝐴2𝑒𝑒𝜀𝜀𝜌𝜌2,max + 𝐴𝐴3 𝜌𝜌2,max⁄ − 𝐴𝐴0(𝑒𝑒𝜀𝜀𝜌𝜌2,max − 𝑒𝑒𝜀𝜀) . Noting that 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗  increases 
monotonically with 𝜌𝜌2∗. Then we solve the equation of 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 0 and obtain (26).Next, we 
substitute 𝑒𝑒𝜀𝜀𝜌𝜌1∗ = 𝑐𝑐1 [𝜀𝜀𝜀𝜀1(𝜌𝜌1∗)2]⁄  into (29) and obtain 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = − 𝑐𝑐1

𝜀𝜀(𝜌𝜌1∗)2 −
𝑐𝑐1
𝜌𝜌1∗

+ 𝑎𝑎1  with 𝑎𝑎1 =
𝐴𝐴1𝑒𝑒𝜀𝜀𝜌𝜌1,max + 𝑐𝑐1 𝜌𝜌1,max⁄ − 𝐴𝐴0(𝑒𝑒𝜀𝜀𝜌𝜌1,max − 𝑒𝑒𝜀𝜀). Noting that 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗  increases monotonically with 
𝜌𝜌1∗. Similarly, we solve the equation of 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = 0 and obtain (27). 
Remark 6: Firstly, it is observed that 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗  increases with the increase of 𝑓𝑓𝑚𝑚  when 𝑓𝑓𝑚𝑚 ≫
max{𝑓𝑓𝑐𝑐,𝑓𝑓𝑑𝑑}.). This means when the computing capability of MEC is enhanced, the advantage 
of the MEC-assisted system over the non-MEC system will increase to some extent. 

Secondly, we note that 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗  is also influenced by the disparity between 𝜌𝜌1,max and 𝜌𝜌2∗ or 
between 𝜌𝜌2,max  and 𝜌𝜌1∗ , respectively. This means that the advantage of the MEC-assisted 
system over the non-MEC system will diminish when the disparity of them becomes small. 
Typically, the MEC-assisted system is inferior to the non-MEC system when 𝜌𝜌2∗ = 𝜌𝜌1,max or 
𝜌𝜌1∗ = 𝜌𝜌2,max. For example, we consider a practical scenario when two hops both suffer from 
deep fading and both UEs have the same level of maximum compression/decompression rate, 
i.e., 𝜌𝜌1,max = 𝜌𝜌2,max. For this special case, there is no need to adopt MEC-assisted servers 
because no performance gain can be achieved compared with the non-MEC system. 

To sum up, for the aforementioned special cases, the advantage of the MEC-assisted system 
holds when one of the UEs is short of computing capability whereas it is not the case when 
the channel of one hop suffers from deep fading. In particular, there is no advantage for 
adopting the MEC-assisted system in comparison with the conventional relaying system when 
channels of both hops are in deep fading. 

5. Numerical Results and Discussion 
In this section, we further evaluate the performance of the MEC-assisted system by 

simulation results with the comparison of the non-MEC system. Some of the relevant 
parameters in simulations are given as follows. The transmit rate for hop-1 and hop-2 are 
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preset to 𝑟𝑟1 = 𝑟𝑟2 = 2 Mbit/s while the transmit power of UE1 and the relay node are preset as 
𝑝𝑝1 = 𝑝𝑝2 = 1 W. The amount of data 𝐷𝐷 that UE1 transmits to UE2 through the relay node is 
10 M bits and the utility weights of the cost function are 𝛾𝛾 = 0.5/Sec, 𝛼𝛼1 = 0.25/Joul, and 
𝛼𝛼2 = 0.25/Joul. The energy consumption for receiving each bit in the receiver is 𝑞𝑞𝑅𝑅𝑅𝑅 =
0.42 × 10−6  Joul/bits. For the data processing, the required numbers of CPU cycles for 
compression and decompression are set to 𝜉𝜉1 = 1500  cycles/bit and 𝜉𝜉2 = 500  cycles/bit, 
respectively. The CPU-cycle frequency of the UEs is set to 𝑓𝑓𝑐𝑐(𝑑𝑑) ∈ [10,1000] MHz and the 
energy consumption per cycle is 𝑞𝑞𝑐𝑐(𝑑𝑑) = 1 × 10−13  Joul/bit. The equivalent CPU-cycle 
frequency of the MEC server is 𝑓𝑓𝑚𝑚 = 100GHz and 𝜀𝜀 = 0.5. For simplicity, we set other 
constant energy consumptions, i.e., 𝐶𝐶1, 𝐶𝐶2, to 0 and denote 𝑔𝑔𝑖𝑖 = 𝜎𝜎𝑖𝑖2/𝑁𝑁0, 𝑖𝑖 = 1,2. Besides, we 
set the tolerance of accuracy 𝛿𝛿 = 10−4 and the maximum number of iterations 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 500 
for the running of Algorithms 1 and 2. 
  Fig. 2(a) verifies the effectiveness of Algorithms 1 and 2 in this paper. A very fast 
convergence rate is shown in global sub-optimal solutions of the MEC-assisted and non-MEC 
systems with 15 iterations for most cases. Fig. 2(a) also compares the total cost of the MEC- 
assisted system with the non-MEC system under different channel conditions of 𝑔𝑔1 = 𝑔𝑔2 =
−20 dB and 𝑔𝑔1 = 𝑔𝑔2 = 0 dB while 𝑓𝑓𝑐𝑐 = 200 MHz and 𝑓𝑓𝑑𝑑 = 500 MHz. It is observed that 
the cost difference of the system, i.e., 𝐺𝐺𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓∗ , varies within a large range under different fading 
channels. Therefore we define an indicator of cost gain, 𝐺𝐺𝐿𝐿 = 𝐿𝐿/𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛, for a better comparison 
of the system performance between the MEC-assisted system and the non-MEC system. 

 
(a) Comparison of total cost of the two systems.  (b) The cost gain and optimal compression rates.  
Fig. 2. The performance comparison with different channel gains and different CPU frequencies. 

 
  Fig. 2(b) illustrates the effect of different CPU frequencies of the UEs on the two systems, 
where figures are given for Case (a): 𝑓𝑓𝑐𝑐 = 𝑓𝑓𝑑𝑑 = 500 MHz and Case (b): 𝑓𝑓𝑐𝑐 = 100 MHz, 𝑓𝑓𝑑𝑑 =
1000 MHz. It is observed in Fig. 2(a) that the MEC-assisted system is superior to the non-
MEC system in Case (b) by acquiring smaller 𝐺𝐺𝐿𝐿 than in Case (a). Furthermore, Fig. 2(a) 
shows that the gap between 𝜌𝜌1∗ and 𝜌𝜌2∗ of Case (b) is much greater than that of Case (a), which 
verified the conclusion in Remark 5 that a greater gap of |𝜌𝜌1∗ − 𝜌𝜌2∗| leads to better performance 
for the MEC-assisted system.  
  For the following figures, we consider more practical situations where 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜌𝜌1,𝑚𝑚𝑚𝑚𝑚𝑚 =
𝜌𝜌2,𝑚𝑚𝑚𝑚𝑚𝑚 = 15, 𝑝𝑝1,𝑚𝑚𝑚𝑚𝑚𝑚 = 1𝑊𝑊 and 𝑝𝑝2 = 1𝑊𝑊 unless otherwise noted (Therefore 𝑔𝑔2 is equivalent 
to the SNR of hop-2, and 𝑔𝑔1  is equivalent to the SNR of hop-1 approximately.). Fig. 3 
illustrates the performance gain of the proposed systems in terms of the SNR of hop-1 or hop-
2  where 𝑓𝑓𝑐𝑐 = 𝑓𝑓𝑑𝑑 = 500  MHz. For Fig. 3(a), the channel gain of hop- 2  varies between 
[−15,5] dB while the channel gain of hop-1 is set to 𝑔𝑔1 = −10 dB. For Fig. 3(b), the channel 
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gain of hop-1 varies between [−15,5] dB while the channel gain of hop-2 is set to 𝑔𝑔2 = −10 
dB.  
  It is observed in Fig. 3 that 𝐺𝐺𝐿𝐿 is generally smaller than 1 during the variation of the SNR of 
hop-2 or hop-1 with low SNR regime of the other hop (below −10 dB). This means that the 
MEC-assisted system is superior to the non-MEC system when the access channel of either 
UE is not in good condition. It is also shown that the advantage of the MEC-assisted system 
relies on the SNR quality of hop-1 much more than on hop-2. This is validated from Fig. 3 
that 𝐺𝐺𝐿𝐿 decreases rapidly when 𝑔𝑔1 is larger than 𝑔𝑔2, especially where 𝑔𝑔1 is above 0 dB. This 
is because when the SNR of hop-1 is much better than hop-2, the cost of the hop-1 will drop 
off significantly, therefore the problem of minimizing the cost of hop-2 is highlighted. Then 
the advantage of MEC-assisted relaying over conventional relaying is fully utilized whereas it 
is further impaired for the same reason when SNR of hop-1 is much lower than hop-2. Besides, 
it is observed from Fig. 3 that 𝜌𝜌1∗ and 𝜌𝜌2∗ decrease respectively with the increase of 𝑔𝑔1 and 𝑔𝑔2, 
while 𝜌𝜌∗ falls with each of them. This is easily understood that when the channel quality is 
improved, the cost in the communication phases will decline and more emphasis will be put 
on reducing that for the computing phases to optimize the total cost, which leads to the 
reduction of the compression rates of the corresponding hop. 

 
(a) The cost gain and compression rates with 𝑔𝑔2.   (b) The cost gain and compression rates with 𝑔𝑔1. 

Fig. 3. The performance comparison of two relaying systems under different fading channels. 

 
(a) The cost gain and compression rates with 𝑓𝑓𝑑𝑑. (b)The cost gain and compression rates with 𝑓𝑓𝑐𝑐. 
Fig. 4. The performance comparison of two systems under different computing capability of UEs. 

 
  Fig. 4 illustrates the performance gain of the MEC-assisted system with different CPU 
frequencies of the UEs, where 𝑓𝑓𝑐𝑐 = 500 MHz for Fig. 4(a) and 𝑓𝑓𝑑𝑑 = 500 MHz for Fig. 4(b). 
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As we discussed previously, the condition of the SNR of hop-1 being better than hop-2 
benefits for improving the advantage of MEC servers. Therefore we set 𝑔𝑔1 = 0 dB and 𝑔𝑔2 =
−10 dB in Fig. 4 for the simplicity of investigation. It is observed that the performance of the 
MEC-assisted system outweighs that of the non-MEC system in both Figs. 4(a) and 4(b). 
Besides, it is observed in Fig. 4(a) that the advantage of the MEC-assisted system weakens 
with the increase of computing capability of UE 1  but strengthens with the increase of 
computing capability of UE2. There are two reasons for this phenomenon: Firstly, as we 
mentioned before the advantage of MEC relaying is enhanced when the gap between 𝜌𝜌1∗ and 
𝜌𝜌2∗ increases and vice versa. Secondly, given the situation that the SNR of hop-1 is much better 
than that of hop-2, it is obvious that for the optimal strategy 𝜌𝜌2∗ will be greater than 𝜌𝜌1∗ to 
combat the worse channel fading. Hence when 𝜌𝜌∗ and 𝜌𝜌2∗ increase with the rise of 𝑓𝑓𝑑𝑑, the gap 
between 𝜌𝜌1∗ and 𝜌𝜌2∗ is expanded, which leads to the increase of 𝐺𝐺𝐿𝐿 in Fig. 4(a). On the other 
hand, as 𝜌𝜌∗ and 𝜌𝜌1∗ increase with the rise of 𝑓𝑓𝑐𝑐, the gap between 𝜌𝜌1 and 𝜌𝜌2 is narrowed, which 
leads to the decrease of 𝐺𝐺𝐿𝐿 in Fig. 4(b). To sum up, the advantage of the MEC-assisted system 
is notably strengthened when the channel condition of hop-1 is better than hop-2 and it is 
further enhanced while the computing capability of UE2 is better than UE1. 

As shown in the analytical and numerical results of this paper, this computing and relaying 
system was analyzed on to what extent MEC servers at the APs can accelerate the P2P 
communication between the mobile devices in saving the cost of energy consumption and time 
delay. The advantage of the MEC- assisted relaying system was discussed in detail, which 
provides valuable physical insights for the practical scenarios. But in addition, certain issues 
still need to be considered for the extension of this work. Firstly, this model is based on the 
P2P communication between one pair of mobile devices, which can be further extended to the 
multi-pairs P2P communication scenario. Secondly the task offloading scheduling of MEC 
servers should be considered as well as the cost minimization and a cost-aware offloading 
scheme needs to be designed to jointly optimize the offloading policy and cost performance 
for the extension model. Then, as the energy consumption of mobile devices is strictly 
constrained by the limited battery capacity, for this reason we concentrated on them and 
neglected the energy consumption of the APs and MEC servers which are supplied by the grid. 
Furthermore, the energy efficiency of the APs and MEC servers needs further investigation if 
a conversion factor is elaborately defined to depict correlation between the improvement of 
the communication and the energy consumption of the APs and MEC servers. Lastly, more 
investigations of the system performance on other wireless channels, e.g., millimeter wave 
channels are advisable for physical insights in the practical scenarios of 6G communication 
networks. 

6. Conclusion 
In this paper, we studied the P2P wireless relaying system where two mobile users 

communicate with each other through the aid of adjacent APs adopting MEC servers. In this 
MEC-assisted communication system the APs can adjust the compression ratios of 
transmission data to accommodate the computation and communication resources of each hop 
with the help of MEC servers, which leads to less time delay and energy consumption. The 
optimal strategy of computing and transmitting was investigated for this system with 
consideration of the variation of wireless channels and the computing capacity of the MEC 
servers. Because this problem is non-convex, a BCD-method algorithm was proposed to obtain 
a local optimal solution with linear complexity and global convergency. It is shown that the 
optima of the transmit power and data rates are decided by the variation of the fading channels 
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only whilst the optima of compression ratios are influenced by the state of the fading channels 
and computation resources. Then the performance of the MEC-assisted communication system 
was evaluated through comparison with that of the conventional communication system which 
was also optimized with a BCD-method algorithm. From the optimal solution of the problem 
and the Monte-Carlo simulations, the advantage of the MEC-assisted system over the 
conventional system are elaborated as follows. Firstly, by decoupling the two hops and 
optimizing the compression ratios of transmission data separately, the MEC-assisted system 
can save more cost than the non-MEC system in the most cases with consideration of the extra 
processing cost at MEC servers. Specifically, the superiority of the MEC-assisted system is 
positively correlated to the gap between the optimal compression ratios of the two hops, i.e., 
|𝜌𝜌1∗ − 𝜌𝜌2∗|. Secondly, a closed-form condition of when the MEC-assisted system gains an 
advantage over the non-MEC system was derived for the general case, which shows that the 
advantages hold for the special case when the computing capability of one of the mobile users 
is extremely poor. Lastly, the performance of the MEC- assisted system in the practical 
scenarios was further studied. It is revealed that the advantage of the MEC-assisted system is 
strengthened by the increase of the computing capability of UE2 but weakened by the increase 
of the computing capability of UE1. Meanwhile, the advantage of the MEC-assisted system 
shows a remarkable improvement when the SNR of hop-1 is greater than that of hop-2. 

Appendix A 

Proof of Theorem 2 
The proof of Theorem 2 relies on the following lemma. 
Lemma 1: The optimization problem 𝒫𝒫4 is jointly convex in (𝜌𝜌1,𝜌𝜌2, 𝑡𝑡). 
Proof: By replacing 𝑝𝑝1 with 1/𝑡𝑡, we reformulate the total cost function as 
  𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝜌𝜌1,𝜌𝜌2, 𝑡𝑡) = 𝐴𝐴1(𝑒𝑒𝜀𝜀𝜌𝜌1 − 𝑒𝑒𝜀𝜀) + 𝐴𝐴2(𝑒𝑒𝜀𝜀𝜌𝜌2 − 𝑒𝑒𝜀𝜀) + �𝛼𝛼′

1
/𝑡𝑡 + 𝛾𝛾′� 𝑒𝑒𝐵𝐵1𝑡𝑡 𝜌𝜌1⁄ + 𝐴𝐴3 𝜌𝜌2⁄ + 𝐴𝐴4.   (30) 

It is easily derived that𝐴𝐴1(𝑒𝑒𝜀𝜀𝜌𝜌1 − 𝑒𝑒𝜀𝜀) + 𝐴𝐴2(𝑒𝑒𝜀𝜀𝜌𝜌2 − 𝑒𝑒𝜀𝜀) + 𝐴𝐴3/𝜌𝜌2 + 𝐴𝐴4 is convex in 𝜌𝜌1 and 𝜌𝜌2, 
then the only remain part is to prove that 𝑓𝑓(𝜌𝜌1, 𝑡𝑡) = (𝛼𝛼′1/𝑡𝑡+ 𝛾𝛾′) 𝑒𝑒𝐵𝐵1𝑡𝑡 𝜌𝜌1� is jointly convex 
function of 𝜌𝜌1 and 𝑡𝑡, which is given as follows. To prove the convexity of 𝑓𝑓(𝜌𝜌1, 𝑡𝑡), we define 
the Hessian Matrix of 𝑓𝑓(𝜌𝜌1, 𝑡𝑡) as 
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 𝐻𝐻11 𝐻𝐻12
𝐻𝐻21 𝐻𝐻22

� = �

∂2𝑓𝑓
∂𝑡𝑡2

∂2𝑓𝑓
∂𝑡𝑡 ∂𝜌𝜌1

∂2𝑓𝑓
∂𝜌𝜌1 ∂𝑡𝑡

 ∂
2𝑓𝑓

∂𝜌𝜌1
2

�.                                         (31) 

Then we have 𝐻𝐻11 = ���𝛼𝛼′
1
− �𝛼𝛼′

1
𝐵𝐵1𝑡𝑡�

2

+ 𝛼𝛼′
1

+ 𝛾𝛾′𝐵𝐵12𝑡𝑡3� 𝑒𝑒𝐵𝐵1𝑡𝑡 (𝑡𝑡3𝜌𝜌1)⁄ > 0 and |𝑯𝑯| =

��𝐵𝐵1𝑡𝑡 �𝛼𝛼′1 + 𝛾𝛾′𝑡𝑡� − 𝛼𝛼′
1
�
2

+ 𝛼𝛼′
1
�2𝛼𝛼′

1
+ 4𝛾𝛾′𝑡𝑡�� 𝑒𝑒2𝐵𝐵1𝑡𝑡 (𝜌𝜌14𝑡𝑡4)⁄ > 0, which fulfills the necessary and 

sufficient condition of a jointly convex function. Therefore we prove that 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝜌𝜌1,𝜌𝜌2, 𝑡𝑡) is a 
jointly convex function, and hence 𝒫𝒫4 is jointly convex in (𝜌𝜌1,𝜌𝜌2, 𝑡𝑡). 

Since we proved that 𝒫𝒫4 is convex by Lemma 1, there is an optimal point, (𝜌𝜌1∗,𝜌𝜌2∗, 𝑡𝑡∗) to 
achieve the minimum cost of this system. According to Karush-Kuhn-Tucker (KKT) 
conditions, the optimal point of 𝒫𝒫4 is given by the following equations. 

∂𝐿𝐿
∂𝜌𝜌1

= 𝐴𝐴1𝜀𝜀𝑒𝑒𝜀𝜀𝜌𝜌1 −
(𝛼𝛼′1/𝑡𝑡+𝛾𝛾′)

𝜌𝜌12
𝑒𝑒𝐵𝐵1𝑡𝑡 = 0,                                (32) 
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∂𝐿𝐿
∂𝜌𝜌2

= 𝐴𝐴2𝜀𝜀𝑒𝑒𝜀𝜀𝜌𝜌2 −
𝐴𝐴3
𝜌𝜌22

= 0,                                                   (33) 
∂𝐿𝐿
∂𝑡𝑡

= 𝐵𝐵1𝛾𝛾′𝑡𝑡2+𝐵𝐵1𝛼𝛼′1𝑡𝑡−𝛼𝛼′1
𝜌𝜌1𝑡𝑡2

𝑒𝑒𝐵𝐵1𝑡𝑡 = 0.                                      (34) 

Since 𝒫𝒫4 is convex, we can solve the KKT conditions of 𝒫𝒫4 to obtain the optimal solution 
of 𝒫𝒫4, and transform them into the optimal solution of 𝒫𝒫3.The KKT conditions of 𝒫𝒫4 are 
solved as follows. First, we note that equation (33) is independent to other equations and only 
related to 𝜌𝜌2. Then we reformulate (33) as 𝜀𝜀𝜌𝜌2 2⁄ ∙ 𝑒𝑒𝜀𝜀𝜌𝜌2 2⁄ = �𝜀𝜀𝜀𝜀3 𝐴𝐴2⁄ 2⁄ , which has the form 
of 𝑥𝑥 = 𝑊𝑊(𝑥𝑥)𝑒𝑒𝑊𝑊(𝑥𝑥) . We can solve this equation and obtain the optimum of 𝜌𝜌2  as 𝜌𝜌2∗ =
2 𝜀𝜀 ∙⁄ 𝑊𝑊��𝜀𝜀𝜀𝜀3 𝐴𝐴2⁄ 2⁄ �, where 𝑊𝑊(⋅) is Lambert W function. Next, we find that the solution of 
(34) is equivalent to the solution of 𝐵𝐵1𝛾𝛾′𝑡𝑡2 + 𝐵𝐵1𝛼𝛼′1𝑡𝑡 − 𝛼𝛼′1 = 0 , and obtain that 𝑡𝑡∗ =
��𝐵𝐵1𝛼𝛼1(𝐵𝐵1𝛼𝛼1 + 4𝛾𝛾) − 𝐵𝐵1𝛼𝛼1� (2𝐵𝐵1𝛾𝛾)� . Then, we substituting 𝑡𝑡∗  into (32), and hence we 
obtain 𝜌𝜌1∗ in (12). Finally, as 𝒫𝒫4 is equivalent to 𝒫𝒫3, we replace 1/𝑡𝑡∗ with 𝑝𝑝1∗ and take into 
account the constraints of 𝜌𝜌1 , 𝜌𝜌2 , 𝑝𝑝1 , then the optimal solution of problem 𝒫𝒫3  is 
obtained.Since P4 has been proved to be convex, we first solve the KKT conditions of 𝒫𝒫4 to 
obtain the optimal solution of 𝒫𝒫4, and then transfer them into the optimal solution of 𝒫𝒫3. 
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