DOI QR코드

DOI QR Code

TIZO/Ag/TIZO 다층막 투명전극을 이용한 폴리에스터 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 연구

A Study of Electro-Optical Properties of Polyester Acrylate-Based Polymer-Dispersed Liquid Crystals Using TIZO/Ag/TIZO Multilayer Transparent Electrodes

  • Cho, Jung-Dae (Institute of Photonics & Surface Treatment, Q-Sys Co. Ltd.) ;
  • Heo, Gi-Seok (National Center for Nanoprocesses and Equipment, Korea Institute of Industrial Technology) ;
  • Hong, Jin-Who (Department of Biochemical & Polymer Engineering, Chosun University)
  • 투고 : 2021.12.13
  • 심사 : 2022.01.04
  • 발행 : 2022.02.10

초록

본 연구에서는 RF/DC 마그네트론 증착법을 이용하여 유리 기판 상에 실온에서 TIZO/Ag/TIZO 다층막 투명전극 필름을 증착하였다. 전체 박막 두께 60 nm TIZO/Ag/TIZO (10 nm/10 nm/40 nm)로 이루어진 다층막의 경우 650 nm에서 투과도는 86.5%, 면저항 값은 8.1 Ω/□를 나타냈으며, 적외선(열선)을 효과적으로 차단할 수 있는 투과도 특성 때문에 향후 에너지 절약형 스마트 윈도우로서의 적용도 가능할 것으로 판단된다. TIZO/Ag/TIZO 다층막 투명전극을 적용한 폴리에스터 아크릴레이트 기반 고분자분산액정(polymer-dispersed liquid crystal, PDLC) 시스템에 있어서 액정과 prepolymer의 함량비, PDLC 코팅층의 두께 및 자외선 세기 변화에 따른 전기광학 특성 및 표면 형태학에 미치는 영향이 조사되었다. 15 ㎛의 PDLC 층 두께에 1.5 mW/cm2의 UV 세기로 광경화된 TIZO/Ag/TIZO 다층막 투명전극 적용 PDLC 셀이 전반적으로 양호한 구동 전압과 on-state 투과도 및 뛰어난 off haze를 나타냈으며, PDLC 복합체의 고분자 매트릭스 표면에 형성된 액정 droplet들은 입사광을 효율적으로 산란시킬 수 있는 1~3 ㎛ 크기를 갖고 있었다. 또한, 본 연구에서 제조된 TIZO/Ag/TIZO 다층막 투명전극 적용 PDLC 기반 스마트 윈도우는 연한 갈색의 색조를 띠고 있어서 심미적 측면에서 색다른 장점을 부여할 것으로 기대된다.

Ti-In-Zn-O (TIZO)/Ag/TIZO multilayer transparent electrodes were prepared on glass substrates at room temperature using RF/DC magnetron sputtering. Obtained multilayer structure comprising TIZO/Ag/TIZO (10 nm/10 nm/40 nm) with the total thickness of 60 nm showed a transmittance of 86.5% at 650 nm and a sheet resistance of 8.1 Ω/□. The multilayer films were expected to be applicable for use in energy-saving smart window based on polymer-dispersed liquid crystal (PDLC) because of their transmittance properties to effectively block infrared rays (heat rays). We investigated the effects of the content ratio of prepolymer, the thickness of the PDLC coating layer, and the ultraviolet (UV) light intensity on electro-optical properties, and the surface morphology of polyester acrylate-based PDLC systems using new TIZO/Ag/TIZO transparent conducting electrodes. A PDLC cell with a thickness of 15 ㎛ PDLC layer photocured at an UV intensity of 1.5 mW/cm2 exhibited good driving voltage, favorable on-state transmittance, and excellent off-haze. The LC droplets formed on the surface of the polymer matrix of the PDLC composite had a size range of 1 to 3 ㎛ capable of efficiently scattering incident light. Also, the PDLC-based smart window manufactured using TIZO/Ag/TIZO multi-layered transparent electrodes in this study exhibited a light brown, which will have an advantage in terms of aesthetics.

키워드

참고문헌

  1. J. W. Doane, Polymer Dispersed Liquid Crystal Display, in: B. Bahadur (Ed.), Liquid Crystals: Applications and Uses, 361, World Scientific, Singapore (1990).
  2. P.S. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore (1995).
  3. J. B. Whitehead Jr., S. Zumer, and J. W. Doane, Light scattering from a dispersion of aligned nematic droplets, J. Appl. Phys. 73, 1057 (1993). https://doi.org/10.1063/1.353292
  4. D. Kim, Study of electrochemical and electrochromic properties of 9-methy1-2,3,6,7-tetramethoxyfluorene in dichloromethane-TFA-TFAn(I), J. Ind. Eng. Chem. 2, 73-78 (1997).
  5. M. Moller, S. Asaftei, D. Corr, M. Ryan, and L. Walder, Switchable electrochromic images based on a combined top-down bottom-up approach, Adv. Mater. 16, 1558-1562 (2004). https://doi.org/10.1002/adma.200400198
  6. D. Barrios, R. Vergaz, J. M. Sanchez-Pena, B. Garcia-Camara, C. G. Granqvist, and G. A. Niklasson, Simulation of the thickness dependence of the optical properties of suspended particle devices, Sol. Energy Mater. Sol. Cells 143, 613-622 (2015). https://doi.org/10.1016/j.solmat.2015.05.044
  7. T. Fujisawa, M. Hayasi, H. Nakada, Y. Tani, and M. Aizawa, An analysis of photo-polymerization induced phase separation process in liquid crystal/polymer composite films, Mol. Cryst. Liq. Cryst. 366, 107-116 (2001). https://doi.org/10.1080/10587250108023953
  8. C. E. Hoyle, T. Y. Lee, and T. Roper, Thiol-enes: chemistry of the past with promise for the future, J. Polym. Sci. Part A: Polym. Chem. 42, 5301-5338 (2004). https://doi.org/10.1002/pola.20366
  9. S. H. Hwang, K. J. Yang, S. H. Woo, B. D. Choi, E. H. Kim, and B. K. Kim, Preparation of newly designed reverse mode polymer dispersed liquid crystals and its electro-optic characteristics, Mol. Cryst. Liq. Cryst. 470, 163-171 (2007). https://doi.org/10.1080/15421400701493653
  10. T. J. White, L. V. Natarajan, T. J. Bunning, and C. A. Guymon, Contribution of monomer functionality and additives to polymerization kinetics and liquid crystal phase separation in acrylate based polymer dispersed liquid crystals (PDLCs), Liq. Cryst. 34, 1377-1385 (2007). https://doi.org/10.1080/02678290701663936
  11. D. Hatice, M. Scott, K. Namil, H. Jun, K. Thein, V. N. Lalgudi, P. T. Vincent, and J. B. Timothy, Kinetics of photo-polymerization-induced phase separation and morphology development in mixtures of a nematic liquid crystal and multifunctional acrylate, Polymer 49, 534-545 (2008). https://doi.org/10.1016/j.polymer.2007.11.039
  12. Y. S. No and C. W. Jeon, Effect of alignment layer on electro-optic properties of polymer-dispersed liquid crystal displays, Mol. Cryst. Liq. Cryst. 513, 98-105 (2009). https://doi.org/10.1080/15421400903195759
  13. M. Kashima, H. Cao, Q. Meng, H. Liu, D. Wang, F. Li, and H. Yang, The influence of crosslinking agents on the morphology and electro-optical performances of PDLC films, J. Appl. Polym. Sci. 117, 3434-3440 (2010). https://doi.org/10.1002/app.32101
  14. K. J. Yang and D. Y. Yoon, Electro-optical characteristics of dye-doped polymer dispersed liquid crystals, J. Ind. Eng. Chem. 17, 543-548 (2011). https://doi.org/10.1016/j.jiec.2010.12.018
  15. T. Minami and T. Miyata, Present status and future prospects for development of non- or reduced-indium transparent conducting oxide thin films, Thin Solid Films 517, 1474-1477 (2008). https://doi.org/10.1016/j.tsf.2008.09.059
  16. D. S. Liu, C. S. Sheu, C. T. Lee, and C. H. Lin, Thermal stability of indium tin oxide thin films co-sputtered with zinc oxide, Thin Solid Films 516, 3196-3203 (2008). https://doi.org/10.1016/j.tsf.2007.09.009
  17. Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and S. W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy, Appl. Phys. Lett. 68, 2699-2701 (1996). https://doi.org/10.1063/1.116313
  18. J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. Marks, Indium tin oxide alternatives-high work function transparent conducting oxides as anodes for organic light-emitting diodes, Adv. Mater. 13, 1476-1480 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1476::AID-ADMA1476>3.0.CO;2-Y
  19. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, Dependence of film composition and thicknesses on optical and electrical properties of ITO-metal-ITO multilayers, Thin Solid Films 326, 67-71 (1998). https://doi.org/10.1016/S0040-6090(98)00520-3
  20. Y. W. Shin, K. B. Kim, S. J. Noh, and S. Y. Soh, Effects of the particle size and shape of silver nanoparticles on optical and electrical characteristics of the transparent conductive film with a self-assembled network structure, Appl. Chem. Eng. 29, 162-167 (2018). https://doi.org/10.14478/ACE.2017.1107
  21. J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, Highly flexible transparent electrodes for organic light-emitting diode-based displays, Appl. Phys. Lett. 85, 3450-3452 (2004). https://doi.org/10.1063/1.1806559
  22. S. W. Cho, J. A. Jeong, J. H. Bae, J. M. Moon, K. H. Choi, S. W. Jeong, N. J. Park, J. J. Kim, S. H. Lee, J. W. Kang, M. S. Yi, and H. K. Kim, Highly flexible, transparent, and low resistance indium zinc oxide-Ag-indium zinc oxide multilayer anode on polyethylene terephthalate substrate for flexible organic light light-emitting diodes, Thin Solid Films 516, 7881-7885 (2008). https://doi.org/10.1016/j.tsf.2008.06.025
  23. K. H. Choi, H. J. Nam, J. A. Jeong, S. W. Cho, H. K. Kim, J. W. Kang, D. G. Kim, and W. J. Cho, Highly flexible and transparent InZnSnOx/Ag/InZnSnOx multilayer electrode for flexible organic light emitting diodes, Appl. Phys. Lett. 92, 223302 (2008). https://doi.org/10.1063/1.2937845
  24. E. M. Kim, I. S. Choi, J. P. Oh, Y. B. Kim, J. H. Lee, Y. S. Choi, J. D. Cho, Y. B. Kim, and G. S. Heo, Transparent conductive ZnInSnO-Ag-ZnInSnO multilayer films for polymer dispersed liquid-crystal based smart windows, Jpn. J. Appl. Phys. 53, 095505, (2014). https://doi.org/10.7567/JJAP.53.095505
  25. J. D. Cho, S. S. Lee, S. C. Park, Y. B. Kim, and J. W. Hong, Optimization of LC droplet size and electro-optical properties of acrylate-based polymer-dispersed liquid crystal by controlling photocure rate, J. Appl. Polym. Sci. 130, 3098-3104 (2013). https://doi.org/10.1002/app.39558
  26. J. D. Cho, Y. B. Kim, G. S. Heo, E. M. Kim, and J. W. Hong, Optimization of electro-optical properties of acrylate-based polymer-dispersed liquid crystals for use in transparent conductive ZITO/Ag/ZITO multilayer films, Appl. Chem. Eng. 31, 291-298 (2020). https://doi.org/10.14478/ACE.2020.1028
  27. G. S. Heo, J. C. Park, B. Y. Oh, S. K. Kim, Y. R. Lee, and D. C. Shin, Combinatorial growth and analysis of Ti-In-Zn-O films deposited by radio-frequency and direct-current magnetron co-sputtering system, Thin Solid Films 520, 7083-7086 (2012). https://doi.org/10.1016/j.tsf.2012.07.127
  28. C. Guillen and J. Herrero, Transparent conductive ITO/Ag/ITO multilayer electrodes deposited by sputtering at room temperature, Opt. Commun. 282, 574-578 (2009). https://doi.org/10.1016/j.optcom.2008.10.075
  29. S. Ito, T. Takeuchi, T. Katayama, M, Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, Conductive and transparent multilayer films for low-temperature-sintered mesoporous TiO2 electrodes of dye-sensitized solar cells, Chem. Mater. 15, 2824-2828 (2003). https://doi.org/10.1021/cm021051t
  30. M. Fahland, P. Karlsson, and C. Charton, Low resisitivity transparent electrodes for displays on polymer substrates, Thin Solid Films 392, 334-337 (2001). https://doi.org/10.1016/S0040-6090(01)01053-7
  31. X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, The design of ZnS/Ag/ZnS transparent conductive multilayer films, Thin Solid Films 441, 200-206 (2003). https://doi.org/10.1016/S0040-6090(03)00141-X