과제정보
이 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022H1D8A3037396) 이 연구는 2022년도 산업통산자원부 및 산업기술평가원(KEIT) 연구비 지원에 의한 연구임(20011249)
참고문헌
- H. H. Jeon, et al.(2020), "Elevator industry technology trend and industry prospect." KEIT PD Issue Report, 20(5):69-85.
- B. G. Gu(2020), "Design and implementation of data logger for elevator remote monitoring." Journal of Platform Technology, 8(4):3-10. https://doi.org/10.23023/JPT.2020.8.4.003
- Korea Elevator Information Center(2022a), Elevator inspection status.
- Korea Elevator Information Center(2022b), Elevator failure status.
- Korea Elevator Information Center(2022c), Elevator accident status.
- B. S. Kim, P. Park(2020), "Derivation of safety management implications through analysis of major elevator failures." J. Korea Saf. Manag. Sci., 22(3):23-29. https://doi.org/10.12812/KSMS.2020.22.3.023
- S. W. Jang, Y. J. Kim(2022), "A study on safety management measures for accident prevention through user error analysis among elevator accident cases." Journal of the Korea Academia-Industrial Cooperation Society, 23(3):549-558.
- O. N. Jeong, et al.(2016), "Accident prevention for the elevator and escalator by the accident type analysis." J. Korean Soc. Saf., 31(4):15-21. https://doi.org/10.14346/JKOSOS.2016.31.4.15
- J. M. Kim, et al.(2016), "Public service design to prevent negligent accident: Focused on escalator in subway station." J. Industrial Design, 10(1):51-60.
- H. J. Kim, et al.(2017), "A study on the estimation of the optimum lifetime of elevator components for elevator accident prevention." KIEE, 66(8):1278-1284.
- S. J. Yoo, et al.(2020), "Design of test bed for the fault diagnosis of traction machines for elevators." Proceedings of the Korean Society of Mechanical Engineers, 2020:113-114.
- T. B. Song, K. H. Choi(2010), "Predictive maintenance using vibration analysis of elevator's parts fault." Proceedings of the Spring Conference of the Korean Society for Precision Engineering, 2010:239-240.
- K. Y. Kim, K. M. Kwak(2008), "Dynamic modeling and controller design for active vibration control of elevator." Proceedings of the Spring Conference of the Korean Society for Noise and Vibration Engineering, 2008:71-76.
- S. Karen, A. Zisserman(2014), Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- H. Kaiming, et al.(2016), "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
- S. Christian, et al.(2016), "Rethinking the inception architecture for computer vision." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:2818-2826.
- A. G. Howardm et al.(2017), Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
- M. Tan, Q. Le(2019), "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning, PMLR, 2019:6105-6114.