과제정보
The research described in this paper was financially supported by the National Key R&D Program of China (Grant No. 2018YFC1504802), National Natural Science Foundation for Young Scientists of China (Grant No. 52104076) and the National Natural Science Foundation of China (Grant No. 52074042).
참고문헌
- Alagha, A.S.N. and Chapman, D.N. (2019), "Numerical modelling of tunnel face stability in homogeneous and layered soft ground", Tunn. Undergr. Sp. Tech., 94, 103096. https://doi.org/10.1016/j.tust.2019.103096.
- Anagnostou, G. and Kovari, K. (1994), "The face stability of slurry-shield-driven tunnels", Tunn. Undergr. Sp. Tech.,9(2), 165-174. https://doi.org/10.1016/0886-7798(94)90028-0.
- Anagnostou, G. and Kovari, K. (1996), "Face stability conditions with earth-pressure-balanced shields", Tunn. Undergr. Sp. Tech., 11(2), 165-173. https://doi.org/10.1016/0886-7798(96)00017-X.
- Babendererde, S. (1991), "Tunnelling machines in soft ground: a comparison of slurry and EPB shield systems", Tunn. Undergr. Sp. Tech., 6(2), 169-174. https://doi.org/10.1016/0886-7798(91)90063-A.
- Broere, W. (1998), "Face stability calculation for a slurry shield in heterogeneous soft soils", Proceedings of the World Tunnel Congress 98 on Tunnels and Metropolises, Sao Paolo, Brazil, April.
- Broere, W. and van Tol, A.F. (2001), "Time-dependant infiltration and groundwater flow in a face stability analysis", Proceedings of the International Symposium on Modern Tunneling Science and Technology, Kyoto, Japan, October.
- Chaipanna, P. and Jongpradist, P. (2019), "3D response analysis of a shield tunnel segmental lining during construction and a parametric study using the ground-spring model", Tunn. Undergr. Sp. Tech., 90, 369-382. https://doi.org/10.1016/j.tust.2019.05.015.
- Chou, H.S., Yang, C.Y., Hsieh, B.J. and Chang, S.S. (2001), "A study of liquefaction related damages on shield tunnels", Tunn. Undergr. Sp. Tech., 16(3), 185-193. https://doi.org/10.1016/S0886-7798(01)00057-8.
- Editorial Department of China Journal of Highway and Transport. (2015), "Review on China's Tunnel Engineering Research", Chin. J. Highway Transport., 28(5), 1-65. https://doi.org/10.19721/j.cnki.1001-7372.2015.05.001.
- Eisenstein, Z. and Ezzeldine, O. (1992), "The effect of tunnelling technology on ground control", Tunn. Undergr. Sp. Tech., 7(3), 273-279. https://doi.org/10.1016/0886-7798(92)90008-6.
- Eskandari, F., Goharrizi, K.G. and Hooti, A. (2018), "The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro", Geomech. Eng., 15(2), 769-774. https://doi.org/10.12989/gae.2018.15.2.769.
- Han, Y.F., Liu, X.R., Li, D.L., Tu, Y.L., Deng, Z.Y., Liu, D.S. and Wu, X.C. (2019), "Model test on the bearing behaviors of the tunnel-type anchorage in soft rock with underlying weak interlayers", B. Eng. Geol. Environ., 79(2), 1023-1040. https://doi.org/10.1007/s10064-019-01564-5.
- Huang, F., Zhang, M., Wang, F., Ling, T. and Yang, X. (2020), "The failure mechanism of surrounding rock around an existing shield tunnel induced by an adjacent excavation", Comput. Geotec., 117, https://doi.org/10.1016/j.compgeo.2019.103236.
- Jeon, Y.J., Jeon, S.C., Jeon, S.J. and Lee, C.J. (2020), "Study on the behaviour of pre-existing single piles to adjacent shield tunnelling by considering the changes in the tunnel face pressures and the locations of the pile tips", Geomech. Eng., 21(2), 187-200. https://doi.org/10.12989/gae.2020.21.2.187.
- Jallow, A., Ou, C.Y. and Lim, A. (2019), "Three-dimensional numerical study of long-term settlement induced in shield tunneling", Tunn. Undergr. Sp. Tech., 88, 221-232. https://doi.org/10.1016/j.tust.2019.02.021.
- Kim, K., Oh, J., Lee, H., Kim, D. and Choi, H. (2018), "Critical face pressure and backfill pressure in shield TBM tunneling on soft ground", Geomech. Eng., 15(3), 823-831. https://doi.org/10.12989/gae.2018.15.3.823.
- Kim, D., Pham, K., Park, S., Oh, J.Y. and Choi, H. (2020), "Determination of effective parameters on surface settlement during shield TBM", Geomech. Eng., 21(2), 153-164. https://doi.org/10.12989/gae.2020.21.2.153.
- Kupferle, J., Zizka, Z., Schoesser, B., Rottger, A., Alber, M., Thewes, M. and Theisen, W. (2018), "Influence of the slurrystabilized tunnel face on shield TBM tool wear regarding the soil mechanical changes-Experimental evidence of changes in the tribological system", Tunn. Undergr. Sp. Tech., 74, 206-216. https://doi.org/10.1016/j.tust.2018.01.011.
- Li, Y., Emeriault, F., Kastner, R. and Zhang, Z.X. (2009), "Stability analysis of large slurry shield-driven tunnel in soft clay", Tunn. Undergr. Sp. Tech., 24(4), 472-481. https://doi.org/10.1016/j.tust.2008.10.007.
- Liu, X.R., Han, Y.F., Li, D.L., Tu, Y.L., Deng, Z.Y., Yu, C.T. and Wu, X.C. (2019), "Anti-pull mechanisms and weak interlayer parameter sensitivity analysis of tunnel-type anchorages in soft rock with underlying weak interlayers", Eng. Geol., 253, 123-136. https://doi.org/10.1016/j.enggeo.2019.03.012.
- Liu, X.R., Xiong, F., Zhou, X.H., Liu, D.S., Chen, Q., Zhang, J.L., Han, Y.F., Xu, B., Deng, Z.Y. and He, C.M. (2021), "Physical model test on the influence of the cutter head opening ratio on slurry shield tunnelling in a cobble layer", Tunn. Undergr. Sp. Tech., 104264. https://doi.org/10.1016/j.tust.2021.104264.
- Liu, D.S., Liu, X.R., Lin, C.Q., Xiong, F., Han, Y.F., Meng, Q.J., Zhong, Z.L., Chen, Q. and Weng, C.X. (2020), " Experimental study and engineering application of slurry permeability mechanism of slurry shield in circular-gravel stratum", Arab. J. Geosci., 13(9), 1000. https://doi.org/10.1007/s12517-020-05731-x.
- Li, J.Y., Liu, W., Zou, J.J., Zhao, Y. and Gong, X.N. (2018), "Large-scale model tests on face instability of shallow shield tunnels in sand", Chin. J. Geotech. Eng., 40(3), 562-567. https://doi.org/10.11779/CJGE201803022.
- Lu, X.L., Zhou, Y.C. and Li, F.D. (2016), "Centrifuge model test and numerical simulation of stability of excavation face of shield tunnel in silty sand", Rock Soil Mech., 37(11), 3324-3328. https://doi.org/10.16285/j.rsm.2016.11.035.
- Maid, U. (1992), "Design features of the Botlek rail tunnel in the Betuweroute", Tunn. Undergr. Sp. Tech., 14(2), 135-140. https://doi.org/10.1016/S0886-7798(99)00027-9.
- Mansour, M. and Swoboda, G. (1997), "Tunnel face stability of hydroshield tunneling", Proceedings of the 9th International Conference on Computer Methods and Advances in Geomechanics, Wuhan, China, November.
- Naseem, A., Schotte, K., De Pauw, B. and De Backer, H. (2019), "Ground Settlements due to Construction of Triplet Tunnels with Different Construction Arrangements", Adv. Civ. Eng., 1-18. https://doi.org/10.1155/2019/8637837.
- Park, H., Oh, J.Y., Kim, D. and Chang, S. (2018), "Monitoring and analysis of ground settlement induced by tunnelling with slurry pressure-balanced tunnel boring machine", Adv. Civ. Eng., 1-10. https://doi.org/10.1155/2018/5879402.
- Swoboda, G. and Abu-Krisha, A. (1999), "Three-dimensional numerical modelling for TBM tunnelling in consolidated clay", Tunn. Undergr. Sp. Tech., 14(3), 327-333. https://doi.org/10.1016/s0886-7798(99)00047-4.
- Smith, A., Dixon, N. and Fowmes, G.J. (2016), "Early detection of first-time slope failures using acoustic emission measurements: large-scale physical modelling", Geotechnique., 67(2), 138-152. https://doi.org/10.1680/jgeot.15.P.200.
- Uchida, K., Wasa, Y. and Kanai, M. (1992), "Design of the shield tunnel for the trans-Tokyo bay highway", Tunn. Undergr. Sp. Tech., 7(3), 251-261. https://doi.org/10.1016/0886-7798(92)90006-4.
- Wang, S.G., Liu, Y.R., Tao, Z.F., Zhang, Y., Zhong, D.N., Wu Z.S., Lin, C. and Yang, Q. (2018), "Geomechanical model test for failure and stability analysis of high arch dam based on acoustic emission technique", Int. J. Rock Mech. Min., 112, 95-107. https://doi.org/10.1016/j.ijrmms.2018.10.018.
- Xu, T. and Bezuijen, A. (2019), "Experimental study on the mechanisms of bentonite slurry penetration in front of a slurry TBM", Tunn. Undergr. Sp. Tech., 93, 103052. https://doi.org/10.1016/j.tust.2019.103052.
- Xue, Y.G., Li, X., Qiu, D.H., Ma, X.M., Kong, F.M., Qu, C.Q. and Zhao, Y. (2019), "Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis", Geomech. Eng., 19(3), 283-293. https://doi.org/10.12989/gae.2019.19.3.283.
- Yamaguchi, I., Yamazaki, I. and Kiritani, Y. (1998), "Study of ground-tunnel interactions of four shield tunnels driven in close proximity, in relation to design and construction of parallel shield tunnels", Tunn. Undergr. Sp. Tech., 13(3), 289-304. https://doi.org/10.1016/S0886-7798(98)00063-7.
- Zhang, L., Feng, K., Gou, C., He, C., Liang, K. and Zhang, H. (2019), "Failure tests and bearing performance of prototype segmental linings of shield tunnel under high water pressure", Tunn. Undergr. Sp. Tech., 92, 103053. https://doi.org/10.1016/j.tust.2019.103053.
- Zhang, F., Gao, Y., Wu, Y. and Wang, Z. (2018), "Face stability analysis of large-diameter slurry shield-driven tunnels with linearly increasing undrained strength", Tunn. Undergr. Sp. Tech., 78, 178-187. https://doi.org/10.1016/j.tust.2018.04.018.
- Zhang, ZX., Hu, X.Y. and Scott, K.D. (2011), "A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils", Comput. Geotech., 38(1), 94-104. https://doi.org/10.1016/j.compgeo.2010.10.011.
- Zeng, S., Lu, X. and Huang, M. (2019), "Discrete element modeling of static liquefaction of shield tunnel face in saturated sand", Acta Geotech., 14(6), 1643-1652. https://doi.org/10.1007/s11440-019-00806-w.
- Zizka, Z., Schoesser, B., Thewes, M. and Schanz, T. (2019), "Slurry shield tunneling: New methodology for simplified prediction of increased pore pressures resulting from slurry infiltration at the tunnel face under cyclic excavation processes", Int. J. Civ. Eng., 17(1), 113-130. https://doi.org/10.1007/s40999-018-0303-2.