DOI QR코드

DOI QR Code

A Study on Secure Encoding for Visible Light Communication Without Performance Degradation

가시광 통신에서 성능 저하 없는 보안 인코딩 연구

  • Received : 2021.10.13
  • Accepted : 2021.12.27
  • Published : 2022.01.31

Abstract

Visible light communication (VLC) is a method of transmitting data through LED blinking and is vulnerable to eavesdropping because the illumination affects the wide range of area. IEEE standard 802.15.7 defines On-Off Keying (OOK), Variable Pulse Position Modulation (VPPM), and Color Shift Keying (CSK) as modulation. In this paper, we propose an encryption method in VPPM for secure communication. The VPPM uses an encoding method called 4B6B where 16 different outputs are represented with 6-bit. This paper extends the number of outputs to 20, to add complexity while not violating the 4B6B generation conditions. Then each entry in the extended 4B6B table is scrambled using vigenère cipher. The probability of decrypting each 6-bit data is $\frac{1}{20}$. Eavesdropper should perform $\sum\limits_{k=1}^{n}20^k$ number of different trials to decrypt the message if the number of keys is n. The proposed method can be applied to OOK of PHY II and CSK of PHY III. We further discuss the secure encoding that can be used in OOK and CSK without performance degradation.

가시광 통신은 LED의 빠른 점멸을 통해 데이터를 보내는 통신 방법이며, 조명이 영향을 미치는 범위가 넓어 도청에 취약하다. IEEE 표준 802.15.7에서는 가시광 통신을 위해 OOK(On-Off Keying), VPPM(Variable Pulse Position Modulation), CSK(Color Shift Keying)를 모듈레이션을 정의한다. 이 논문에서는 VPPM을 사용한 통신에서 보안을 위한 물리계층 암호화를 제안한다. VPPM은 4B6B를 사용하여 메시지를 인코딩하는데 16개의 출력을 6-bit를 사용해 표현한다. 제안하는 인코딩은 4B6B의 생성조건을 위배하지 않으며 복잡도를 높이기 위해 20개의 출력으로 확장한다. 그리고 확장된 4B6B 테이블의 각 출력을 vigenère cipher를 이용하여 암호화한다. 도청자가 암호화된 각 6-bit 데이터를 복호화할 확률은 $\frac{1}{20}$ 이다. 따라서 키의 개수가 n일 때 도청자는 메시지를 복호화하기 위해 최대 $\sum\limits_{k=1}^{n}20^k$ 만큼 전수조사해야 한다. PHY II의 OOK와 PHYIII의 CSK에서도 입력과 출력을 관리하는 테이블을 사용하기 때문에 제안하는 방식을 적용할 수 있다. 본 논문에서는 OOK와 CSK방식에서도 성능 저하 없이 사용할 수 있는 보안 인코딩에 대해 논의한다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2019-0-00533, 컴퓨터 프로세서의 구조적 보안 취약점 검증 및 공격 탐지대응, IITP-2019-0-01343).

References

  1. "IEEE Standard for Local and metropolitan area networks--Part 15.7: Short-Range Optical Wireless Communications," in IEEE Std 802.15.7-2018 (Revision of IEEE Std 802.15.7-2011), pp.1-407, 23 Apr. 2019.
  2. J.-Y. Wang, X.-T. Fu, J.-B. Wang, M. Lin, J. Cheng, and M.-S. Alouini, "Secrecy capacity bounds for visible light communications with signal-dependent noise," arXiv preprint arXiv: 2109.11097. 2021.
  3. A. Gupta, and X. Fernando, "Exploring secure visible light communication in next-generation (6G) internet-of-things," 2021 International Wireless Communications and Mobile Computing (IWCMC)," 2021.
  4. T. V. Pham, and A. T. Pham, "Energy-Efficient Friendly Jamming for Physical Layer Security in Visible Light Communication," 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021.
  5. R. Shaaban, and S. Faruque, "An enhanced indoor visible light communication physical-layer security scheme for 5G networks: Survey, security challenges, and channel analysis secrecy performance," International Journal of Communication Systems, Vol.34, No.4, pp.e4726, 2021.
  6. N. Su, E. Panayirci, M. Koca, A. Yesilkaya, H. V. Poor, and H. Haas, "Physical layer security for multi-user MIMO visible light communication systems with generalized space shift keying," IEEE Transactions on Communications, Vol.69, No.4, pp.2585-2598, 2021. https://doi.org/10.1109/TCOMM.2021.3050100
  7. C.-W. Chow, Y. Liu, C.-H. Yeh, Y.-H. Chang, Y.-S. Lin, K.-L. Hsu, X.-L. Liao, and K.-H. Lin, "Display light panel and rolling shutter image sensor based optical camera communication (OCC) using frame-averaging background removal and neural network," Journal of Lightwave Technology, Vol.39, No.13, pp.4360-4366, 2021. https://doi.org/10.1109/JLT.2021.3073656
  8. J. He, and B. Zhou, "Vehicle positioning scheme based on visible light communication using a CMOS camera," Optics Express, Vol.29, No.17, pp.27278-27290, 2021. https://doi.org/10.1364/OE.433485
  9. Y.-S. Lin, C.-W. Chow, Y. Liu, Y.-H. Chang, K.-H. Lin, Y.-C. Wang, and Y.-Y. Chen, "PAM4 rolling-shutter demodulation using a pixel-per-symbol labeling neural network for optical camera communications," Optics Express, Vol.29, No.20, pp.31680-31688, 2021. https://doi.org/10.1364/OE.430625
  10. P. Wang, J. Liang, and L. V. Wang, "Single-shot ultrafast imaging attaining 70 trillion frames per second," Nature Communications, Vol.11, No.1, pp.1-9, 2020. https://doi.org/10.1038/s41467-019-13993-7
  11. J. F. Kurose, "Computer networking: A top-down approach featuring the internet," 7/E. Pearson Education India. 2017.
  12. J. Classen, J. Chen, D. Steinmetzer, M. Hollick, and E. Knightly, "The spy next door: Eavesdropping on high throughput visible light communications," Proceedings of the 2nd International Workshop on Visible Light Communications Systems, 2015.
  13. M. Guri, B. Zadov, and Y. Elovici, "LED-it-GO: Leaking (a lot of) data from air-gapped computers via the (small) hard drive LED," International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 2017.
  14. M. Kim and T. Suh, "A low-cost surveillance and information system for museum using visible light communication," IEEE Sensors Journal, Vol.19, No.4, pp.1533-1541, 2018. https://doi.org/10.1109/jsen.2018.2879606
  15. D. R. Stinson, "Cryptography: theory and practice," Chapman and Hall/CRC. 2005.
  16. H. Lipmaa, P. Rogaway, and D. Wagner, "CTR-mode encryption," First NIST Workshop on Modes of Operation, 2000.
  17. A. X. Widmer and P. A. Franaszek, "A DC-balanced, partitioned-block, 8B/10B transmission code," IBM Journal of Research and Development, Vol.27, No.5, pp.440-451, 1983. https://doi.org/10.1147/rd.275.0440