References
- An, M.Y., Wang, K.C. and Tam L.T. (1993), "Computation of inviscid flow field around 3-D aerospace vehicles and comparison with experimental and flight data", 31st Aerospace Sciences Meeting, 885. https://doi.org/10.2514/6.1993-885.
- Anderson, W., Thomas, J. and van Leer, B. (1986), "A comparison of finite volume flux vector splitting for the Euler equations", AIAA J., 24(9), 1453-1460. https://doi.org/10.2514/3.9465.
- Baumann, E., Pahle, J.W., Davis, M.C. and White, J.T. (2010), "X-43a flush air data sensing system flight-test results", J. Spacecraft Rocket., 47(1), 48-61. https://doi.org/10.2514/1.41163.
- Bertin, J.J. (2006), Aerodynamics for Engineers, 4 th Edition, Pearson Education in South Asia, New Delhi.
- Chen, G., Chen, B., Li, P., Bai, P. and Ji, C. (2015), "Study on algorithms of flush air data sensing system for hypersonic vehicle", Procedia Eng., 99, 860-865. https://doi.org/10.1016/j.proeng.2014.12.613.
- Cobleigh, B.R., Whitmore, S.A., Haering, Jr., E.A., Borrer, J. and Roback, V.E. (1999), "Flush air data sensing (FADS) system calibration procedures and results for blunt forebodies", 9th International Space Planes and Hypersonic Systems and Technologies Conference, 4816. https://doi.org/10.2514/6.1999-4816.
- Davis, M.C., Pahle, J.W., Marshall, L.A., Mashburn, M.J. and Franks, R. (2000), "Development of a flush air data sensing system on a sharp-nosed vehicle for flight at Mach 3 to 8", Aerospace Sciences Meeting and Exhibit, 504. https://doi.org/10.2514/6.2000-504.
- Fan, H.Y., Lu, W., Xi., G. and Wang, S. (2003), "An improved neural network based calibration method for aerodynamic pressure probes", J. Fluid. Eng., 125(1), 113-120 https://doi.org/10.1115/1.1523063.
- Haykin, S. (2005), Neural Networks, Pearson Prentice Hall, New Delhi, India
- Hillje, E.R. and Nelson, R.L. (1983), "Ascent air data system results from the space shuttle flight test program", AIAA Paper, 1980. AIAA-80-0422. https://doi.org/10.2514/6.1981-2457.
- Johnston, I.A., Tuttle, S.L., Jacobs, P.A. and Shimoda, T. (1999), "The numerical and experimental simulation of hypervelocity flow around the HYFLEX vehicle forebody", Shock Wav., 9, 57-67. https://doi.org/10.1007/s001930050139.
- Karlgaard, C.D., Kutty, P. and Schoenenberger, M. (2017), "coupled inertial navigation and flush air data sensing algorithm for atmosphere estimation", J. Spacecraft Rocket., 54(1), 128-140. https://doi.org/10.2514/1.A33331.
- Larson, T.J., Moes, T.R. and Siemers III, P.M. (1990), "Wind-tunnel investigation of a flush airdata system at Mach numbers from 0.7 to 1,4", NASA TM 101697, NASA Ames Research Centre California, USA.
- Liepmann, H.W. and Roshko, A. (2007), Elements of Gas Dynamics, First South Asian Edition, Dover Publications, Inc., printed at Gopsons Papers LTD, Noida, India.
- Liou, M.S. (2006), "A sequel to AUSM, Part II: AUSM+-up for all speeds", J. Comput. Phys., 214(1), 137-170. https://doi.org/10.1016/j.jcp.2005.09.020.
- Liu, Y., Xiao, D. and Lu, Y. (2014), "Comparative study on a solving model and algorithm for a flush air data sensing system", Sensor., 14(5), 9210-9226. https://doi.org/10.3390/s140509210.
- Mehta, R.C. (2020a), "Drag reduction for payload fairing of satellite launch vehicle with aerospike in transonic and low supersonic speeds", Adv. Aircraft Spacecraft Sci., 7(4), 371-385 https://doi.org/10.12989/aas.2020.7.4.371.
- Mehta, R.C. (2017b), "Analysis of payload compartment venting of satellite launch vehicle", Adv. Aircraft Spacecraft Sci., 4(4), 437-448. https://doi.org/10.12989/aas.2017.4.4.437.
- Mehta, R.C. (2017c), "Multi-block structured grid generation method for computational fluid dynamics", Scholar. J. Eng. Technol., 5(8), 387-393. https://doi.org/10.21276/sjet.
- Mehta, R.C. and Tiwari, S.B. (2017), "Controlled random search technique for estimation of convective heat transfer coefficient", Heat Mass Transf., 43(11) 1171-1177. https://doi.org/10.1007/s00231-006-0185-8.
- Paces, P., Draxler, K., Hanzal, V., Censky, T. and Vasko, O. (2010), "A combined angle of attack and angle of sideslip smart probe with twin differential sensor modules and doubled output signal", SENSORS, 2010 IEEE, 284-289. https://doi.org/10.1109/ICSENS.2010.5689866.
- Price, A. (2010), "A controlled random search procedure for global optimization", Comput. J., 26(4), 367-370. https://doi.org/10.1093/comjnl/20.4.367.
- Quindlen, J.F. and Langelaan, J.W. (2013), "Flush air data sensing for soaring-capable UAVs", 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 1153. https://doi.org/10.2514/6.2013-1153.
- Reis, C.J.B., Manzanares-Filho, N. and de Lima, A.M.G. (2019), "Robust optimization of aerodynamic loadings for airfoil inverse designs", J. Brazil Soc. Mech. Sci. Eng., 41, 207. https://doi.org/10.1007/s40430-019-1705-z.
- Rohlf, D., Brieger, O. and Grohs, T. (2004), "X-31 vector system identification-approach and results", AIAA Atmospheric Flight Mechanics Conference and Exhibit, 4830. https://doi.org/10.2514/6.2004-4830.
- Rohloff, T.J., Whitmore, S.A. and Catton, I. (1998), "Air data sensing from surface pressure measurements using a neural network method", AIAA J., 36(11), 2094-2101. https://doi.org/10.2514/2.312.
- Rosemount Model (1984), Aerospace Division, Rosemount Inc., Burnsville, Minnesota, USA.
- Samy, I., Postlethwaite, I., Gu, D.W. and Green, J. (2010), "Neural-Network-Based flush air data sensing system demonstrated on a Mini Air Vehicle", J. Aircraft, 47(1), 18-31. https://doi.org/10.2514/1.44157.
- Shevchenko, A.M. and Shmakov, A.S. (2017), "Multi-hole pressure probes to wind tunnel experiments and air data systems", AIP Conference Proceedings, 1893(1), 030088. https://doi.org/10.1063/1.5007546.
- Srivastava, A. and Meade, A.J. (2015), "A comprehensive probabilistic framework to learn air data from surface pressure measurements", Int. J. Aerosp. Eng., 1-19, Article ID 183712. http://doi.org/10.1155/2015/183712.
- Watanabe, S., Ishimoto, S. and Yamamoto. Y. (1997), "Aerodynamic characteristics evaluation of hypersonic flight experiment vehicle based on flight data", J. Spacecraft Rocket., 34(4), 464-470. https://doi.org/10.2514/2.3259.
- Whitmore, S.A., Cobleigh, B.R. and Haering, E.A. (1998), "Design and calibration of the X-33 Flush Airdata Sensing (FADS) system", NASA TM 206540, NASA Dryden Flight Research Centre, California, USA.