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Abstract
Derivative-linked securities (DLS) is a type of derivatives that offer an agreed return when the underlying

asset price moves within a specified range by the maturity date. The underlying assets of DLS are diverse such as
interest rates, exchange rates, crude oil, or gold. A German 10-year bond rate-linked DLS and a USD-GBP CMS
rate-linked DLS have recently become a social issue in Korea due to a huge loss to investors. In this regard, this
paper accounts for the payoff structure of these products and evaluates their prices and fair coupon rates as well
as risk measures such as Value-at-Risk (VaR) and Tail-Value-at-Risk (TVaR). We would like to examine how
risky these products were and whether or not their coupon rates were appropriate.

We use Hull-White Model as the stochastic model for the underlying assets and Monte Carlo (MC) methods
to obtain numerical results.

The no-arbitrage prices of the German 10-year bond rate-linked DLS and the USD-GBP CMS rate-linked
DLS at the center of the social issue turned out to be 0.9662% and 0.9355% of the original investment, respec-
tively. Considering that Korea government bond rate for 2018 is about 2%, these values are quite low. The fair
coupon rates that make the prices of DLS equal to the original investment are computed as 4.76% for the German
10-year bond rate-linked DLS and 7% for the USD-GBP CMS rate-linked DLS. Their actual coupon rates were
1.4% and 3.5%. The 95% VaR and TVaR of the loss for German 10-year bond rate-linked DLS are 37.30%
and 64.45%, and those of the loss for USD-GBP CMS rate-linked DLS are 73.98% and 87.43% of the initial
investment. Summing up the numerical results obtained, we could see that the DLS products of our interest were
indeed quite unfavorable to individual investors.

Keywords: interest rate-linked derivative-linked securities, pricing, coupon rate, Hull-White model,
Value-at-Risk, Tail-Value-at-Risk

1. Introduction

Derivative-linked securities (DLS) is a financial instrument that offers an agreed return when the
underlying asset price moves within a specified range by a fixed maturity date. It is similar to Equity-
linked securities (ELS), but the types of underlying assets are different. The return of DLS is linked
to interest rates, exchange rates, crude oil, gold, and so on, while the return of ELS is linked to stocks
or market indices. In year 2019, the German 10-year bond rate-linked DLS that matured on Sept.
26th, 2019 and the USD-GBP CMS rate-linked DLS that matured on Sept. 25th, 2019 have inflicted
enormous losses to investors and thus, these products have become a big social issue in Korea. It
was also suspected that their risks had not been properly informed to some investors when they were
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sold. In this paper, we would like to analyze how fair these two products were designed and how
risky they were in the market situation of that time. Below, the German 10-year bond rate-linked DLS
we consider will be referred as G10Y DLS and the USD-GBP CMS rate-linked DLS of interest as
UGCMS DLS.

The total amount of principals of G10Y DLS and UGCMS DLS was 822.4 billion KRW, which
is approximately 680 million USD at the exchange rate of that time. The guaranteed coupon rates
for G10Y DLS and UGCMS DLS were 1.4% and 3.5%, respectively. These DLSs were classified as
highly risky instruments with a high probability of losing principal at the time of sales. Nevertheless,
it was quite surprising that the realized rate of return of G10Y DLS with maturity, September 26, 2019
was –98.6% and that of UGCMS DLS with maturity, September 25, 2019 was –46.46%.

Accurate pricing and determination of proper coupon rates of DLSs would be necessary for the
formulation of a sound and healthy financial market. In this sense, studies of DLSs should be done in
both the investors’ view and the financial instrument sellers’ view. From the perspective of investors,
if the price of DLS was correctly assessed, appropriate investments in DLS that reflect each investor’s
risk-taking property would be possible. From the perspective of financial instrument sellers, the fair
coupon rate of DLS would lead to the development of stable instruments providing a proper level
of return. The general structure of DLSs is quite asymmetric in the sense that the loss on the side
of sellers is limited by the guaranteed coupon rate but the loss on the investors could be the whole
investments.

While there have been many studies on ELS in finance literature, not much research on DLS has
been done. For examples of studies on ELS, Broadie et al. (1997) suggested a continuity correction
for discrete barrier options, which can be applied to path dependent options like ELS options. Lyuu
(1998) extended combinatorial methods to pricing European-style barrier options, which could be
used for numerical pricing of ELS products. Jeong et al. (2010) presented the numerical valuation of
the two-asset step-down equity-linked securities option by the operator-splitting method. Lee et al.
(2019) explored the pricing of ELS products through the icicled step-barrier option pricing formula. In
this paper, we focus on DLSs that have recently emerged as significant products in financial markets
and evaluate the prices and coupon rates that make the prices equal to the original investment by
Monte Carlo simulations. Moreover, we estimate risk measures such as Value-at-Risk (VaR) and Tail-
Value-at-Risk (TVaR) of losses by Monte Carlo simulations so that we can figure out the proper levels
of risk.

G10Y DLS and UGCMS DLS are both interest rate-linked DLSs, and thus, we need to specify a
stochastic model for the underlying interest rate. We assume that the interest rate follows Hull-White
model, which is one of the most widely used models for pricing interest rate derivatives. For in-
stances, Gupta and Subrahmanyam (2005) examined the pricing and hedging performance of interest
rate models including Hull-White model using US dollar cap and floor daily prices. Henrard (2009)
proposed an approximation for the pricing of European swaption under Hull-White model. Ostrovski
(2013) described how an efficient and exact Monte Carlo simulation of Hull-White model could be
performed. One thing to note is that we need to use the risk-neutral measure for pricing and finding the
fair coupon rates but use the real-world probability measure for computing risk measures. Hull-White
model is defined under the risk-neutral measure, so we need to modify parameters to incorporate the
market price of risk for computing risk measures.

The remainder of the paper is organized as follows. Section 2 first explores the current trend
of DLSs traded in financial markets in South Korea. Then we describe the payoff structures of the
one-asset DLS, G10Y DLS and the two-asset DLS, UGCMS DLS. Section 3 focuses on Hull-White
model as the stochastic model for the underlying interest rates and introduces risk measures, VaR and
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Table 1: Issuance status of ELS & DLS in Korean financial market from 2014 to 2019(Unit of volume: Billion
KRW)

Issue
ELS DLS

Year # of Contracts Volume # of Contracts Volume
2014 17,089 51,617 2,072 10,639
2015 18,865 61,286 2,168 11,859
2016 16,068 34,624 2,863 16,074
2017 21,283 65,085 4,186 18,400
2018 21,230 65,941 3,368 16,306
2019 22,178 76,732 3,545 17,603

Table 2: Volume of DLS by underlying assets in Korean financial market in the third quarter, 2019 (Unit :
Trillion KRW): Values in parentheses are percentages

Underlying asset Interest rate Credit Exchange rate Commodity goods Etc Total
Volume 2.0(30.7) 1.3(20.0) 0.4(6.0) 0.1(1.5) 2.6(40.0) 6.5(100.0)

TVaR. Section 4 concerns with the pricing and the computing risk measures of DLSs using Monte
Carlo simulations. Section 5 concludes the paper with some future considerations.

2. Derivative-linked securities (DLS)

Recently, low interest rates have continued globally, so investors who want higher coupon rates turn to
other investment possibilities such as ELS or DLS instead of traditional fixed income securities. Table
1 shows the number of contracts and the volume of ELS and DLS products sold in South Korea from
2014 to 2019. The number of contracts and the volume of DLS in 2014 was 12% and 20% of those of
ELS, respectively. These figures has risen to 16% and 23% in 2019. Although DLS still accounts for
a smaller portion of the financial market than ELS, DLS has been on the rise in the number of cases
and the volume. Table 2 provides the volume of DLS for each underlying asset issued in the third
quarter of 2019. The numbers in parentheses are the percentage of DLS issued for the corresponding
underlying asset. The highest volume is 30.7%, which corresponds to the interest rate-linked DLS.
We can see that interest rate is currently the main underlying asset in DLS. Sections 2.1 and 2.2 will
discuss interest rate-linked DLS in more details by introducing the payoff structures of G10Y DLS
and UGCMS DLS. Note that other DLS products can also be analysed similarly, although they may
have slightly different payoff structures.

2.1. One-asset Interest rate-linked DLS : German 10-year bond rate

One of the interest rate-linked DLS that became a social issue in Korea in 2019 is the German 10-year
bond rate-linked DLS (G10Y DLS), which has the payoff structure in (2.1). Here, we assume that the
initial investment is one unit; that is, when we invest one unit on the starting date, at the maturity, we
get (2.1) returned. G10Y DLS was issued with the starting date of May 26, 2019 and the maturity
date of September 26, 2019. The maturity date refers to the termination of the contract of DLS. The
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Figure 1: Plot of payoff structure of the German 10Y bond rate-linked DLS.

Figure 2: German 10Y bond rate from May 27, 2019 to September 25, 2019.

final valuation of the underlying asset was done on September 25, 2019.

Payoff =


1 + 0.014, RT ≥ −0.003[
2 + 1000

3 RT

]
+ 0.014, −0.006 ≤ RT < −0.003

0.014, RT < −0.006
(2.1)

where RT denotes the German 10-year bond rate per annum at the closing time of the Korean market
on the valuation date, September 25, 2019 and T is 1/3 (years), which is the term of this product.
When the principal of Pv is invested at the starting date, then Pv × (2.1) is returned on the maturity
date. 0.014(1.4%) is the coupon rate proposed by the financial institution that sold G10Y DLS. Figure
1 illustrates this payoff structure graphically by visualizing the rate of return and values of RT . The
horizontal axis represents RT (%) and the vertical axis represents the corresponding rate of return
(%). If RT is greater than −0.3%, the constant rate of 1.4% of the original investment is paid as the
return of the investment. If RT ends up with less than −0.3%, the rate of return starts to decrease
and at −0.6%, the minimum value of −98.6% is reached. For example, if RT = −0.2%, 1.4% of the
investment is returned as the profit and if RT = −0.5%, 1000/3 × (−0.005) + 1.014 = −65.3% of the
investment is returned as the profit. In other words, 34.7% of the principal investment will be lost.
If RT < −0.006, 98.6% of the principal will be lost. The coupon rate 1.4% was somewhat attractive
compared to the prevailing interest rate in year 2019. However, from Figure 1, we can easily see that
the payoff structure possibly brings a huge loss depending on the value of RT .

Figure 2 displays the German 10-year bond rate observed from May 27, 2019, to September 25,
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Figure 3: Interest rate swap between two investors.

(a) USD 5Y CMS rate

(b) GBP 7Y CMS rate
Figure 4: CMS rates from September 25, 2018 to September 20, 2019.

2019. We can see that the rate starts at −0.142%, decreases over time and finally reaches −0.576%.
The x-axis is the time measured in years. Note that these are the rates observed daily at the closing
time of the German market, so −0.576% is not RT in equation (2.1) to calculate the actual loss of
G10Y DLS. The German 10-year bond rate applied to G10Y DLS, which is RT in equation (2.1) was
−0.619%, which was the rate observed at the closing time of the Korean market on the final valuation
date (the actual percentage of loss includes the settlement of the asset management fee, which is
ignored in this study).

2.2. Two-asset interest rate-linked derivative-linked securities : USD-GBP CMS rate

First of all, let us introduce a constant maturity swap (CMS). A swap is an agreement between two
investors to exchange a cash flow in the future. The most common type of swap is the interest rate
swap, which is an agreement between two investors that exchanges a fixed rate and a floating rate.
In Figure 3, investors A and B exchange n% fixed rate and LIBOR (London Interbank Offered Rate)
where LIBOR is the most commonly used floating rate and n% is called the swap rate. That is, investor
B converts the cash flow on interest payments from a floating rate to a fixed rate through this swap.

CMS is a variation of the interest rate swap in which the maturity of floating portion is periodically
reset. At each time of the interest payments, the investors exchange interests based on the c-year swap
rate and LIBOR or a fixed rate, where c is the maturity of the swap rate used. In general, the swap
rates have a longer maturity than the reset period. The c-year swap rate to be used for the floating
portion has the same maturity at all times of interest payments and is called CMS rate. For example,
USD 5-year swap rate can be used for CMS with the reset period of 3 months. LIBOR is commonly
used for the other portion of CMS, but a fixed rate or another CMS rate can also be used. The CMS
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Figure 5: Payoff structure of the USD-GBP CMS rate-linked DLS issued on September 25, 2018.

with USD 5-year swap rate for the floating portion and is called USD 5-year CMS.
The two-asset DLS we consider in this paper is the USD-GBP CMS rate-linked DLS with the un-

derlying assets of USD 5-year CMS and GBP 7-year CMS. As mentioned in Section 1, we abbreviate
the name of this two-asset interest rate-linked DLS as UGCMS DLS. Figure 4(a) and 4(b) are plots
of the USD 5-year CMS rate and GBP 7-year CMS rate from September 25, 2018, to September 25,
2019, respectively. Since the maturity of UGCMS DLS is 1 year, CMS rates for 1 year are displayed.
USD 5-year CMS rate starts at 3.112%, decreases over time and finally reaches 1.488%, while GBP
7-year CMS rate starts at 1.578%, decreases over time and finally reaches 0.705%. These rates also
have decreasing trend as German 5-year bond rate, but they stay positive. As with German 10Y bond
rates, these are the rates observed daily at the closing time of markets overseas. So they are not the
input values in the payoff function in (2.2). In the payoff function, the observed rates at the closing
time of Korean market on the valuation date is to be used. Unfortunately, we could only find the daily
closing CMS rates overseas.

UGCMS DLS was issued with the starting date of September 25, 2018 and the maturity date of
September 25, 2019. The valuation date was September 24, 2019. The payoff function of UGCMS
DLS is given in (2.2). Again, we assume that the initial investment is one unit.

Payoff =



1 + 0.035t1 (Early redemption at t1), if the realized path ∈ A
1 + 0.035t2 (Early redemption at t2), if the realized path ∈ Ac ∩ B
1 + 0.035t3 (Early redemption at t3), if the realized path ∈ Ac ∩ Bc ∩C
1 + 0.035, if the realized path ∈ Ac ∩ Bc ∩Cc ∩ D

min
(

Ut4
Ut0
,

Gt4
Gt0

)
+ 0.035, if the realized path ∈ Ac ∩ Bc ∩Cc ∩ Dc ∩ E

0.035, otherwise
(2.2)

where Ut and Gt denote the USD CMS rate and the GBP CMS rate per annum at time t, 0 < t ≤ 1.
t0 = 0 indicates the starting date of the contract, September 25, 2018 and t4 is the valuation date,
September 24, 2019. ti’s i = 1, 2, 3 are the dates when the underlying rates are evaluated: t1 = 1/4,
t2 = 1/2, t3 = 3/4 years from the starting date. There will be early redemptions at t1, t2, or t3 if
the realized path is in A ∪ B ∪ C, and otherwise, the payment is made at the maturity. The sets are
defined as A = {0.95 ≤ min(Ut1/Ut0 ,Gt1/Gt0 )}, B = {0.85 ≤ min(Ut2/Ut0 ,Gt2/Gt0 )}, C = {0.75 ≤
min(Ut3/Ut0 ,Gt3/Gt0 )}, D = {0.55 ≤ min(Ut4/Ut0 ,Gt4/Gt0 )}, E = {0 ≤ min(Ut4/Ut0 ,Gt4/Gt0 ) < 0.55}.
Note that as long as the realized path is included in A∪ B∪C ∪D, the annualized rate of return is the
same as 3.5%, which is the coupon rate of this DLS product. As with G10Y DLS, this product also
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has a possibility of a big loss, with the maximum loss of 96.5% of the entire investment. One thing to
note is that Uti and Gti , i = 0, . . . , 4 are the daily CMS rates at the closing time of the Korean market.

Figure 5 illustrates the payoff structure of UGCMS DLS graphically. The horizontal axis rep-
resents min(Ut/Ut0 ,Gt/Gt0 ) and the vertical axis represents the coresponding rate of return (%). If
min(Ut/Ut0 ,Gt/Gt0 ) is greater than or equal to 0.95 at t1, 0.875% of the principal is returned at t = t1
along with the original principal. Otherwise, the opportunity for early redemption is given again at
t2. If min(Ut/Ut0 ,Gt/Gt0 ) is greater than or equal to 0.85 at t2, 1.75% of the principal is returned
at t = t2 along with the original principal, and so on. When early redemptions are not made and
if min(Ut/Ut0 ,Gt/Gt0 ) is between 0 and 0.55 at t4, (100 min(Ut4/Ut0 ,Gt4/Gt0 ) − 96.5)% of the prin-
cipal is returned at the maturity along with the original principal. The rate of return will not go
below −96.5%. For example, if early redemptions are not made and min(Ut4/Ut0 ,Gt4/Gt0 ) is 0.3, then
0.3 − 0.965 = −0.665 and thus, 66.5% of the original principal will be lost.

3. Interest rate models and risk measures

Since the DLSs we consider are both interest rate-linked DLSs, we need a stochastic model for ex-
plaining the underlying interest rates. There are two types of interest rate models, the equilibrium
model and the no-arbitrage model. Equilibrium model derives a stochastic process for the short rate
that applies to an infinitesimally short period of time based on some assumptions about economic
variables. Short rate is also referred as the instantaneous spot rate. Commonly used equilibrium mod-
els are Rendleman and Barter model, Vasicek model, and Cox-Ingersoll-Ross model. Rendleman and
Barter (1980) developed a model in which interest rates follow a stochastic process similar to stock
prices processes. However, stock prices do not have the phenomenon of mean reversion that is a well-
known characteristic of interest rate processes. The interest rates tend to pull back to some long-run
average level over time, which is called as the mean reversion. Thus, Rendelman and Barter model
does not reflect the mean reversion of interest rate processes. Vasicek (1977) developed a model that
incorporates the mean reversion and Cox et al. (1985) extended Vasicek model to obtain CIR model
with the diffusion parameter proportional to the square root of the current short rate. In CIR model,
when interest rate increases in the short term, the standard deviation of interest rate also increases,
while the standard deviation of interest rate is always constant in Vasicek model. Note that the inter-
est rate can become negative with Vasicek model but cannot become negative with CIR model.

No-arbitrage models are models desinged to be exactly consistent with the current term structure
of interest rates. Suppose R(t,T ) refers the spot interest rate at time t for maturity T , which means
that R(t,T ) can be used to price bonds at t that matures in T − t years. The term structure of interest
rate at time t is roughly the relationship between R(t,T ) and its maturity, T . That is, it is the curve
that corresponds R(t,T ) to T for T > t. The disadvantage of equilibrium models is that they do not fit
the current term structure since the term structure is the output of the model. When the model does
not price bonds correctly due to the incorrect term structure, even if the error is small, bond option
prices could be quite largely wrong. With no-arbitrage models, on the other hand, the term structure is
an input, so the observed term structure from the market is consistent with the term structure derived
from the model.

Ho-Lee model (Ho and Lee, 1986) is the first no-arbitrage model introduced but more widely
used no-arbitrige model is Hull-White model. Ho-Lee model is easy to apply, but there is not much
flexibility in choosing the volatility structure and it does not incorporate the mean-reversion. Hull
and White (1990) develped a model by generalizing the level of mean reversion from Vasicek model.
While Vasicek model has a constant level of mean reversion, Hull-White model has a time-varying
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level of mean reversion so that it provides an exact fit to the initial term structure. We explore more
about Hull-White model in Section 3.1 and will use Hull-White model in Section 4 as the underlying
process of interest rates.

3.1. Hull-White model

We suppose that the underlying asset processes are defined on a probability space, (Ω,F , (Ft)t≥0,Q).
(Ft) is a filtration generated by the underlying asset processes, containing accumulated information up
to time t. Assume that the interest rate follows Hull-White model given below under the risk-neutral
measure Q,

drt = [θ(t) − αrt]dt + σdzt (3.1)

where rt refers to the short rate at time t and α and σ are constants. z is the standard Brownian
motion under the risk-neutral measure. α is the rate of mean reversion, which indicates that rt tends
to converge to its average over time. Larger α means a faster mean reversion. In the model, rt returns
to the θ(t)/α at the speed of α. σ is the volatility of interest rate and θ(t) is a time-varying quantity
that is calculated using the initial term structure.

Suppose that F(0, t) is the instantaneous forward rate for a maturity t at time zero. Using equation
(3.1), we derive the relationship between θ(t) and F(0, t) as

θ(t) =
∂F(0, t)
∂t

+ αF(0, t) +
σ2

2α

(
1 − e−2αt

)
. (3.2)

F(0, t) is calculated from P(0, t) by using the equation (3.3). P(0, t) is a bond price at time 0 with
maturity t.

F(0, t) = −
∂ ln P(0, t)

∂t
. (3.3)

And P(0, t) is calculated from R(0, t), the spot interest rate prevailing at time 0 for maturity t, using
the following equation (3.4),

P(0, t) = e−R(0,t)t. (3.4)

Therefore, the initial term structure, R(0, t) is used to calculate θ(t) through equations (3.1), (3.3), and
(3.4). Under Hull-White model, rt |Fs follows a normal distribution with the mean µ and the variance
γ2 given below,

rt |Fs ∼ N
(
µ, γ2

)
(3.5)

where

µ = rse−α(t−s) + F(0, t) +
σ2

2α

(
1 − e−αt

)2
− F(0, s)e−α(t−s) −

σ2

2α
(
1 − e−αs)2 e−α(t−s), (3.6)

γ2 =
σ2

2α

(
1 − e−2α(t−s)

)
. (3.7)

This fact on the distribution of the interest rate is useful when we generate interest rate paths in
Monte-Carlo simulations. Bond price with maturity date T is determined by the following,

P(t,T ) = A(t,T )e−B(t,T )rt , (3.8)
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(a) USD 5Y CMS rate, USD 10Y bond rate (b) GBP 7Y CMS rate, GBP 12Y bond rate

Figure 6: CMS rates and bond rates of USD and GBP from September 25, 2018 to September 24, 2019 .

where

B(t,T ) =
1 − e−α(T−t)

α
, (3.9)

ln A(t,T ) = ln
P(0,T )
P(0, t)

+ B(t,T )F(0, t) −
1

4α3σ
2
(
e−αT − e−αt

)2 (
e2αt − 1

)
. (3.10)

For more details on Hull-White model, one can refer, for example, Hull (2011).
In the case of UGCMS DLS, we use the bond price formula, (3.8) for CMS rates calculated from

the model. Figure 6(a) and 6(b) compare USD 5Y CMS rates and GBP 7Y CMS rates with USD 10Y
bond rates and GBP 12Y bond rates, respectively from September 25, 2018, to September 24, 2019.
We can see that it would be reasonable to apply bond price formula to calculate CMS rates from the
model since CMS rates and bond rates are very similar.

3.2. Risk measures

Value at Risk (VaR) is a statistical measure of the riskiness of financial entities or portfolios of assets.
It is defined as the maximum dollar amount expected to be lost, at a predefined confidence level. For
example, 99% VaR of 1 million KRW means that there is 99% confidence that the portfolio will not
lose more than 1 million KRW. It can be written in the following equation.

P(X > πp) = 1 − p, (3.11)

where X is a loss random variable and πp is the 100p% VaR of X. Although Value at Risk is an easy
and intuitive risk measure, it is considered insufficient to reflect the current level of risk. Value at Risk
does not tell us anything about how big the loss will be when the loss is larger than the VaR computed.
Also, it does not satisfy the subadditivity condition of a coherent risk measure. It means that Value at
Risk does not fully explain the diversification effect that is widely accepted in finance literature and
industry.

There are several coherent risk measures proposed in finance literature, and the most widely used
one is Tail-Value at Risk (TVaR). 100p% TVaR is the expected loss on the condition that loss exceeds
the 100p% VaR of X, given as in equation (3.12). For example, 99% TVaR of 1 million KRW means
that the expected loss is 1 million KRW given that the loss is greater than π0.99. Refer to Kulgman et
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al. (2012) for more information on VaR and TVaR.

TVaR p(X) = E(X|X > πp). (3.12)

We will try to show the level of risk of investments in G10Y DLS and UGCMS DLS by calculating
their VaR and TVaR in Section 4. Note that risk measures are calculated under the real-world proba-
bility measure, not under the risk-neutral measure. The interest rate models are originally designed for
option pricing, so they are defined under the risk-neutral measure. However, as the risk management
is gaining more importance, models under the real-world measure are getting more attentions. Section
4 deals with simulations of paths under both of the risk-neutral measure and the real-world measure.

4. Numerical results

In financial markets, the no-arbitrage price of a traded instrument is determined by the expectation of
the discounted payoff of the instrument under the risk-neutral measure. Thus, the price of a DLS is
computed as the expectation of the discounted payoff of the DLS. When we say that the no-arbitrage
price of a certain DLS product is 1.05, for instance, we mean that there would be an arbitrage oppor-
tunity if we invest more than or less than 1.05 to get the given payoff of the DLS. We will assume
Hull-White model given in equation (3.1) and compute the prices of DLS products of interest by
Monte Carlo simulations in this section. We discount the payoff scheduled at time T by multiplying
e−R(0,T )T to the payoff where R(0,T ) is the spot interest rate prevailing at time 0 for maturity T .

4.1. Calibration and path generation

In order for numerical analyses of DLS products, we need to determine the parameters of the underly-
ing model. With Hull-White model in equation (3.1), values of α and σ have to be determined. These
values are parameters under the risk-neutral measure. Many times, calibrating parameter values of the
underlying financial model uses the least-squares method. In other words, we find parameter values
that minimize the sum of squared differences between the derivative prices observed in the market
and ones computed by the model. Since most arbitrage-free approaches for interest rate models fit
the parameters to the zero-coupon bond yield curve (Ang and Sherris, 1997), we use the zero-coupon
bond prices to calibrate the parameter values under the risk-neutral measure. More specifically, we
find the parameters that minimize the following objective function∑

i

(Ui − Vi)2, (4.1)

where Ui is the ith bond price observed in the market and Vi is the ith bond price computed from
the model. In case of G10Y DLS, German bond prices on May 26, 2019 were used with maturities
ranging from zero to 10 years. The market prices were available with maturities 3, 6, 9 months and
from 1 to 10 years by year. In case of UGCMS DLS, we used USD bond prices on September 25,
2018 with maturities 1, 3, 6 months and from 1 to 5 years and GBP bond prices on the same date with
maturities 1, 3, 6 months and from 1 to 12 years.

The volatility term σ is the same under the risk-neutral measure and the real-world measure as we
can see from the well-known Girsanov’s theorem. But the drift term which is the coefficient of dt term
in equation (3.1) will be different under two different probability measures. To determine the drift term
under the real-world measure, the market price of risk should be estimated. It is often assumed to be 0
because it is not clear how to estimate it and the numerical differences between simulations under two
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different probability measures are not really known. However, assuming the market price of risk to be
0 may distort the distribution of simulated paths except cases with very short term horizons. Thus, it
would be desirable to estimate the market price of risk in some way. For more details of simulations
under the real-world measure, see Hull et al. (2014) or Yasuoka (2015) among others.

In this work, we followed the procedure given in Hull et al. (2014) for simulating paths under the
real-world measure as follows. Assume that the underlying model under the risk-neutral measure is
given as in equation (3.1). Assuming the constant market price of risk, λ, the underlying model under
the real-world measure can be written as

drt = [θ(t) − αrt + λσ]dt + σdz, (4.2)

and λ is estimated by

λ = −
F(T ) − r0

σT
, (4.3)

where F(T ) is the long-run average instantaneous forward rate with maturity T and r0 is the continu-
ously compounded long-run average short-term interest rate.

In the risk-neutral world, investors are risk-neutral, but in the real-world, they are not. When the
investors are risk-averse in the real world as they usually are, they would require higher return from
risky assets, so the drift of the bond price process would be higher under the real-world measure than
under the risk-neutral measure. Since the interest rates moves the opposite way from bond prices, the
drift of the interest rate model will be smaller under the real-world measure. It implies a negative
value of λ.

There are, in general, two methods for generating paths from Hull-White model, Monte Carlo
(MC) method and Hull-White Tree (HWT) method (Hull and White, 1996). MC method has an
advantage that it can easily incorporate complicated payoff structures including path-dependent fea-
tures. On the other hand, HWT method has an advantage in reflecting the mean reversion of interest
rates since it has higher degrees of freedom by using trinomial trees. DLS products are typically
path-dependent with relatively complex payoff structure, and they can be easily implemented by MC
method. Thus, we used MC method and the following is the steps that we followed for the numerical
studies.

(1) Calibrate the parameter values under the risk-neutral measure using the least-squares method.

(2) Generate random paths from Hull-White model with calibrated parameter values in (1).

(3) Calculate the payoff for each path and discount it by multiplying exp(−R(0, τ)τ) where τ is the
time of payments.

(4) Take the average of the discounted payoff and use it to approximate the price of DLS.

(5) Compute the market price of risk, λ using observed forward rates.

(6) Calculate the drift under the real-world measure using λ in (5).

(7) Generate random paths from Hull-White model with parameter values under the real-world mea-
sure and compute risk measures.

Figure 7 shows the generated MC paths under the real-world measure: (a) German 10Y bond rate,
(b) USD 5Y CMS rate, and (c) GBP 7Y CMS rate. The number of paths is 10,000 in all three cases.
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(a) Paths of German 10Y bond rate by MC simulations (b) Paths of USD 5Y CMS rate by MC simulations

(c) Paths of GBP 7Y CMS rates by MC simulations
Figure 7: Paths of German bond rates and USD-GBP CMS rates by MC simulations.

Figure 8: The observed German bond prices and the corresponding model prices; the solid line is the observed
prices and dotted line is the model prices.

In each plot, the line with bold dots is the actually observed path. In all three plots, it can be seen that
the actually observed path is within the range of the simulated paths, but it is a rather extreme case
that is not commonly observed.
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Table 3: The price and the fair coupon rate of G10Y DLS
Price Fair coupon rate

0.9662 ×Pv 4.76%

Figure 9: Histogram of relative frequencies of paths with a negative rate of return, G10Y DLS.

Table 4: Counts and relative frequencies of paths with a negative rate of return, G10Y DLS

Rate of return (%) Counts Relative frequency
−90 ∼ −100 178 8.28%
−80 ∼ −90 83 3.86%
−70 ∼ −80 96 4.47%
−60 ∼ −70 157 7.31%
−50 ∼ −60 173 8.05%
−40 ∼ −50 171 7.96%
−30 ∼ −40 251 11.68%
−20 ∼ −30 279 12.98%
−10 ∼ −20 373 17.37%

0 ∼ −10 388 18.05%
Total 2149 100 %

Table 5: VaR and TVaR of the loss of G10Y DLS

Conf. level 99.25% 99% 95% 90%
VaR 92.96% 86.41% 37.30% 12.27%

TVaR 97.90% 95.76% 64.45% 44.07%

4.2. One-asset derivative-linked securities (DLS)

As mentioned in Section 4.1, we calibrate parameters of Hull-White model using German bond prices
on May 25, 2019 with maturities ranging from zero to 10 years. Calibration results from equation
(4.1) are α = 0.19, σ = 0.0036, and λ = −0.5225. For pricing, we generate paths from equation
(3.1) with α = 0.19 and σ = 0.0036 and for risk measures, generate paths from equation (4.2) with
α = 0.19, σ = 0.0036, and λ = −0.5225. Figure 8 compares the actual bond price and the price
computed from the model with calibrated parameters.



98 Manduk Kim, Seongjoo Song

Table 6: Calibration results for UGCMS DLS

USD 5Y CMS GBP 7Y CMS
α σ λ α σ λ

0.1898 0.0118 −0.3043 0.2655 0.0042 −0.2130

Table 7: The price and the fair coupon rate of UGCMS DLS

Price Fair coupon rate
0.9355 ×Pv 7.0182%

Table 3 provides the price and fair coupon rate of G10Y DLS calculated by random paths gen-
erated under the risk-neutral measure. By the fair coupon rate, we mean the coupon rate that makes
the discounted expected payoff equal to the initial investment. If this value is larger than the actual
rate, then the product is regarded as favorable to sellers and otherwise, the product is favorable to
investors. We computed the fair coupon rate by Newton Raphson method. The price of G10Y DLS is
0.9662 × Pv where Pv is the initial investment. In other words, when 1 is invested at t = 0, then its
discounted payoff is expected to be 0.9662. The fair coupon rate was computed as 4.76%, which is
considerably higher than the coupon rate actually proposed with G10Y DLS, 1.4%.

Next, we investigate the distribution of sample paths under the real-world measure. Figure 9 is a
histogram of the relative frequencies of paths with negative rate of returns and Table 4 contains counts
of paths with negative rate of returns. The distribution of paths with negative rate of returns is skewed
to the left with a small spike at the leftmost interval. The spike is due to the lower bound of the loss;
the maximum possible loss is 98.6% of the initial investment. Among 10,000 sample paths generated
under the risk-neutral measure, 2149 paths ended up with payoffs less than the original investment
and 135 paths with the minimum possible payoffs, respectively. The actual path realized in year 2018
tends to be an extreme case; however, the probability of observing paths with the payoff less than the
original investment is 21.49%, which is not small.

Table 5 contains values of VaR and Tail-VaR of the loss. For example, 90% VaR is 12.27%, which
means that the probability of observing more serious loss than 12.27% of the initial investment is
10%. 90% TVaR, the expected loss given that loss is greater than 90%VaR is 44.07% of the initial
investment. With the confidence level of 99.25%, VaR is 92.96% and TVaR is 97.9%. Thus, this DSL
product does not seem to be a low-risk instrument at all.

4.3. Two-asset derivative-linked securities (DLS)

We calibrate parameters of Hull-White model using USD bond prices and GBP bond prices as men-
tioned in Section 4.1. USD bond prices used are the ones observed on September 24, 2018 with
maturities from zero to five years, and GBP bond prices used are the ones observed on September
25, 2018 with maturities from zero to twelve years. Table 6 shows the calibration results for USD
5Y CMS and GBP 7Y CMS. Figure 10 compares the observed bond prices and the prices computed
from the model with the calibrated parameters for USD bonds and GBP bonds. We can see that the
observed bond prices and the model prices are very close.

Table 7 shows the price and fair coupon rate of UGCMS DLS calculated by random paths gen-
erated under the risk-neutral measure. The price is computed as 0.9355 × Pv where Pv is the initial
investment, and the fair coupon rate is 7.0182%, which is fairly larger than the actual coupon rate,
3.5%. If 7.0182% is used instead of 3.5% in the UGCMS DLS, then the no-arbitrage price would be
100% of the initial investment.

Next, we analyze the distribution of paths under the real-world probability measure. Figure 11
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(a) USD bond price (b) GBP bond price
Figure 10: Plot comparing the actual and theoretical bond price.

Figure 11: Histogram of relative frequencies of paths with a negative rate of return, UGCMS DLS.

is the histogram of relative frequencies of paths with negative returns and Table 8 shows the counts
and relative frequencies of paths with negative returns. Note that the negative rate of return starts
from −41.5% and the worst rate of return is −96.5% from Figure 5. 1742 and 1538 paths out of
10,000 generated paths ended up with payoffs less than the original investment and less than 53.54%
of the original investment, respectively. Payoff of 53.54% of the original investment means the rate
of return is −46.46%, which is the actual realized rate of return of UGCMS DLS. The probability of
obtaining the payoff with the rate of return less than −46.46% is 15.38%, so the realized payoff can
be considered to be in the range of probable cases.

Table 9 provides the values of VaR and TVaR of the loss of UGCMS DLS. For example, 90%
VaR and TVaR are 58.67% and 76.75%, respectively. Thus, the probability of observing a loss higher
than 58.67% of the initial investment is 10% and the expected loss given that loss is greater than 90%
VaR is 76.75% of the initial investment. With the confidence level of 98.75%, VaR is 95.84% and
TVaR is 96.48%. As with the case of G10Y DLS, UGCMS DLS also does not seem to be a low-risk
instrument.
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Table 8: Counts and relative frequencies of paths with a negative rate of return, UGCMS DLS
Rate of return (%) Counts Relative frequency
−90 ∼ −100 191 10.96%
−80 ∼ −90 150 8.61%
−70 ∼ −80 263 15.10%
−60 ∼ −70 389 22.33%
−50 ∼ −60 400 22.96%
−40 ∼ −50 349 20.03%

Total 1742 100.00%

Table 9: VaR and TVaR of the loss of UGCMS DLS

Conf. level 98.75% 97% 95% 90%
VaR 95.84% 84.81% 73.98% 58.67%

TVaR 96.48% 93.05% 87.43% 76.75%

5. Conclusion

Recently, the proportion of contracts and trading volumes of DLS in financial markets in South Ko-
rea is increasing. For five years from year 2014, the proportion of DLS contracts to ELS contracts
increased from 12% to 20%, and the proportion of trading volumes increased from 16% to 23%.
Meanwhile, in 2018 and 2019, some DLS products in the Korean market have caused huge losses
to investors. In this regard, we evaluated prices and fair coupon rates as well as VaR and TVaR of
DLS products: G10Y DLS and UGCMS DLS, which were at the center of social issues in Korea a
few years ago. Although we investigated two DLS products only numerically, this study would be
meaningful in the respect that there are not much research on interest rate-linked DLS.

We used Hull-White model for the underlying interest rate model. Hull-White model is, as a no-
arbitrage model, known to have an advantage of being able to accurately fit the initial term structure.
For pricing and finding fair coupon rates, we calibrated parameters of Hull-White model under the
risk-neutral measure but for risk measures, calibrated them under the real-world probability measure.
After calibrating parameters, we generated paths through Monte Carlo methods.

With both of G10Y DLS and UGCMS DLS, the no-arbitrage prices were computed to be lower
than the initial investments, and the fair coupon rates were computed to be higher than the actual
coupon rates. In other words, the coupon rates offered by financial institutions were unfavorable to
investors, assuming that the undelrying asset followed Hull-White model.

The actual realized losses of G10Y DLS and UGCMS DLS were 98.6% and 46.46% of original
investments, respectively. From the distribution of paths generated under the real-world measure, we
could see that the realized path of UGCMS DLS was in the range of probable cases, while that of
G10Y DLS was rather an extreme case. From the estimated risk measures, both of DLS products did
not seem to be low-risk instruments.

Short rate models are mostly developed for pricing and analyzed under the risk-neutral measure.
Thus, the risk-neutral simulation under Hull-White model is widely performed, but the simulation
under the real-world probaiblity measure is not common and quite challenging. We followed a method
of finding parameter values under the real-world measure given in Hull et al. (2014), but this method
is, in fact, not very rigorous. It would be another possibility to try other models such as the LIBOR
market model (Brace et al, 1997) that models forward rates that can be directly observd in financial
markets. We would like to leave this as a future research topic.
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