DOI QR코드

DOI QR Code

Analysis of the Utilization of Mobile Applications by Generation Z using Topic Modeling :Focusing on Users' Essay Data

토픽모델링을 활용한 Z세대의 애플리케이션 효용성에 대한 분석: 이용자의 에세이 데이터를 중심으로

  • Park, Ju-Yeon (College of Cha Mirisa Liberal Arts, Duksung Women's University) ;
  • Jeong, Do-Heon (Department of Library and Information Science, Duksung Women's University)
  • 박주연 (덕성여자대학교 차미리사교양대학) ;
  • 정도헌 (덕성여자대학교 문헌정보학과)
  • Received : 2021.11.06
  • Accepted : 2022.01.20
  • Published : 2022.01.28

Abstract

The purpose of this study is to provide basic information necessary for the establishment of mobile service marketing strategies, educational service development, and engineering education for Generation Z by analyzing the utilitization of various applications by Gen Z. To this end, 177 essays on mobile service usage experience were collected, major topics were analyzed using topic modeling, and these were visualized through word cloud analysis. As a result of the study, the main topics were related to 'transportation' such as movement and public transportation, 'personal management' such as schedule management, financial management, food management, 'transaction' such as checkout, meeting, purchase, 'leisure' such as eating out, travel, study, culture. Additionally, words such as time, thought, people, life, bus, information, confirmation, payment, KakaoTalk, and so on were found to have a high of frequency of use. Also, there was found to be a difference between topics by college. This study is meaningful in that it collected essays, which are unstructured data, and analyzed them through topic modeling.

본 연구는 이용자 중심 관점에서 Z세대의 애플리케이션 사용의 효용성을 분석하여 Z세대에 대한 이해를 돕고 Z세대를 위한 모바일 서비스 마케팅 전략 수립, 교육서비스 개발, 공학교육 등에 필요한 기초 정보를 제공하는데 목적이 있다. 이를 위해 Z세대인 대학생의 애플리케이션 사용경험에 대한 에세이를 177건 수집하였고, 토픽모델링을 활용하여 주요 토픽들을 분석하고, 이를 워드 클라우드 분석을 통해 시각화하였다. 연구 결과 주요 토픽들은 이동, 대중교통 등과 같은 '교통', 일정관리, 금융관리, 음식관리 등과 같은 '개인적 관리', 계산, 모임, 구매, 외식 등과 같은 '거래', 여행, 스터디, 문화 등과 같은 '여가활용' 과 관련된 것으로 나타났다. 그리고 시간, 생각, 사람, 생활, 버스, 정보, 확인, 결제, 카카오톡 등의 용어가 높은 빈도를 보였다. 또한, 단과대학별로 분석한 결과 토픽 간 차이가 나타났다. 본 연구는 비정형데이터인 에세이를 수집하여 애플리케이션 효용성을 토픽모델링을 통해 실증적으로 분석하였다는 점에서 의의가 있다.

Keywords

References

  1. J. H. Moon, H. J. Kim & J. H. Kim. (2015). A Study on Trend Prediction of Future Application Market by Comparing the Change Analysis of Smartphone Application Usage Patterns. Entrue Journal of Information Technology, 14(1), 57-72.
  2. H. S. Park. (2016). A Study on the Characteristics of New Generation with Life Style: Focus on Generation Z. The Journal of Humanities and Social Sciences 21, 7(6), 753-767. DOI : 10.22143/HSS21.7.6.44
  3. M. J. Kang, C. E. Lee, D. Y. Lee & Y. H. Lee. (2020). Identifying Characteristics and Types of Generation Z according to the Behavior of Smartphone Camera Use. Archives of Design Research, 33(3), 155-175. DOI : 10.15187/adr.2020.08.33.3.155
  4. J. H. Lee. (2013). A Study on the Recognition & Preference App icon - Focused on App icon design for elementary school students -. A Journal of Brand Design Association of Korea, 11(3), 81-90. DOI : 10.18852/bdak.2013.11.3.81
  5. S. J. Kim. (2013). The Characteristics in Design of Smart Phone Applications : Mainly on the Comparison between Korean and American Application Icons. Journal of Digital Design, 13(1), 215-224. DOI : 10.17280/jdd.2013.13.1.021
  6. G. Y. Kim & K. J. Park. (2020). A Data-driven Approach to Categorization of Mobile Applications and Analysis of Application Attributes Affecting User Evaluation. Journal of the Korean Institute of Industrial Engineers, 46(2), 156-163. DOI : 10.7232/JKIIE.2020.46.2.156
  7. H. S. Choi, Q. Peng & W. S. Rhee. (2020). Design and Implementation of the Machine Learning-based Restaurant Recommendation System. Journal of Digital Contents Society, 21(2), 259-268. DOI : 10.9728/dcs.2020.21.2.259
  8. S. S. Kim, K. S. Han, B. S. Kim, S. K. Park & S. K. Ahn. (2011). An Empirical Study on Users' Intention to Use Mobile Applications. Journal of Korean Institute of Information Technology, 9(8), 213-228.
  9. Y. S. Yoo. (2015). Consumer Preferences for Tea-Related Smartphone Applications : Focus on 20's Consumers. The Journal of the Korea Contents Association, 15(3), 352-361. DOI : 10.5392/JKCA.2015.15.03.352
  10. S. J. Oh. (2014). A Study on the Determinants of Mobile Application Purchase based on User Groups. Information Systems Review, 16(1), 73-88. DOI : 10.14329/isr.2014.16.1.073
  11. A. R. Lee, K. H. Kang & C. C. Lee. (2011). A Comparative Study on Smartphone App Store Use Based on Smartphone Adoption Stages: Focusing Individual Characteristics and Perceptions Toward Technology. Entrue journal of information technology, 10(2), 181-198.
  12. Y. G. Lee. (2021). A Study on the Factors Influencing Acceptance Intention and Acceptance Behavior of Technologies Related to the 4th Industrial Revolution and Smart Factory. Journal of Convergence for Information Technology, 11(4), 1-18. DOI : 10.22156/CS4SMB.2021.11.04.001
  13. J. S. Choi, S. J. Kim & D. S. Kwon. (2021). The Type of Attachment of e-commerce Users Impact on the Intention to Accept Technology. Journal of Convergence for Information Technology, 11(4), 35-45. DOI : 10.22156/CS4SMB.2021.11.04.035
  14. J. H. Park & Y. J. Lee. (2019). A Study on Mobile Video Usage of Generation Z in the Republic of Korea based on the Grounded Theory - Focused on YouTube-. Journal of Communication Design, 67, 312-327. DOI : 10.25111/jcd.2019.67.24
  15. C. Bakewell & V. W. Mitchell. (2003). Generation Y female consumer decision-making styles. International journal of retail & distribution management, 31(2), 95-106. https://doi.org/10.1108/09590550310461994
  16. Y. J. Yang & K. O. Kim. (2020). Latent Profile Analysis of Smartphone Usage Patterns among Z Generation and Millennial Generation. Journal of Consumer Studies, 31(4), 159-182. DOI : 10.35736/JCS.31.4.7
  17. Mobile app usage - Statistics & Facts. (2021. 10. 14.).https://www.statista.com/topics/1002/mobile-app-usage/#dossierKeyfiguresuarter/
  18. D. M. Blei, A. Y. Ng, & M. I. Jordan. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993-1022. DOI : 10.5555/944919.944937
  19. D. H. Jeong & J. Y. Park. (2021). Data Analysis of Dropouts of College Students Using Topic Modeling. Journal of the Korea Institute of Information and Communication Engineering, 25(1), 88-95. DOI: 10.6109/jkiice.2021.25.1.88
  20. D. H. Jeong. (2019). Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method. Journal of the Korean Society for information Management, 36(4), 83-105. DOI: 10.3743/KOSIM.2019.36.4.083
  21. D. M. Mimno, H. M. Wallach, E. M. Talley, M. Leenders & A. K. McCallum. (2011). Optimizing semantic coherence in topic models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing: EMNLP '11, 262-272. DOI: 10.5555/2145432.2145462