DOI QR코드

DOI QR Code

Furfurylation Effects on Discoloration and Physical-Mechanical Properties of Wood from Tropical Plantation Forests

  • Received : 2021.06.28
  • Accepted : 2022.01.10
  • Published : 2022.01.25

Abstract

Wood from tropical plantation forests has lower physical and mechanical properties than mature wood. Furfuryl alcohol (FA) impregnation into the wood could help to enhance hydrophobic properties, dimensional stability, and structural strength. Furfurylation was applied to specimens of the following four fast-growing tropical wood species: jabon (Anthocephalus cadamba), sengon (Falcataria moluccana), mangium (Acacia mangium), and pine (Pinus merkusii). The discoloration and physical and mechanical properties were subsequently measured, and the results showed that furfurylated wood had a darker color and better physical and mechanical properties than untreated wood. Specifically, the furfurylated wood had higher density, modulus of elasticity, and hardness and lower moisture content, water absorption, swelling, and shrinkage. The furfurylation significantly enhanced physical and mechanical properties.

Keywords

Acknowledgement

This research was a part of Priority Basic Research of the University Grant (Penelitian Dasar Unggulan Perguruan Tinggi) Granted by the Ministry of Research and Technology - Research and Innovation Agency of the Indonesian Republic.

References

  1. American Society for Testing Materials [ASTM]. 2007. Specific Gravity of Wood and Wood-based Materials (ASTM D2395-07). ASTM International, West Conshohocken, PA, USA.
  2. Arsyad, W.O.M., Basri, E., Hendra, D., Trisatya, D.R. 2019. Termite resistance of impregnated jabon wood (Anthocephalus cadamba Miq.) with combined impregnant agents. Journal of the Korean Wood Science and Technology 47(4): 451-458. https://doi.org/10.5658/WOOD.2019.47.4.451
  3. Aydemir, D., Gunduz, G., Ozden, S. 2012. The influence of thermal treatment on color response of wood materials. Color Research and Application 37(2): 148-153. https://doi.org/10.1002/col.20655
  4. British Standard [BS]. 1957. Methods of Testing Small Clear Specimens of Timber. British Standards Institution, London, UK.
  5. Buchelt, B., Dietrich, T., Wagenfuhr, A. 2012. Macroscopic and microscopic monitoring of swelling of beech wood after impregnation with furfuryl alcohol. European Journal of Wood and Wood Products 70(6): 865-869. https://doi.org/10.1007/s00107-012-0631-x
  6. Cahyono, T.D., Darmawan, W., Priadi, T., Iswanto, A.H. 2020. Flexural properties of heat-treatment samama (Anthocephalus macrophyllus) wood impregnated by boron and methyl metacrylate. Journal of the Korean Wood Science and Technology 48(1): 76-85. https://doi.org/10.5658/WOOD.2020.48.1.76
  7. Christie, R.M. 2001. Colour Chemistry. Royal Society of Chemistry, London, UK.
  8. Dirna, F.C., Rahayu, I., Zaini, L.H., Darmawan, W., Prihatini, E. 2020. Improvement of fast-growing wood species characteristics by MEG and nano SiO2 impregnation. Journal of the Korean Wood Science and Technology 48(1): 41-49. https://doi.org/10.5658/WOOD.2020.48.1.41
  9. Dong, Y., Qin, Y., Wang, K., Yan, Y., Zhang, S., Li, J., Zhang, S. 2016. Assessment of the performance of furfurylated wood and acetylated wood: Comparison among four fast-growing wood species. BioResources 11(2): 3679-3690.
  10. Dong, Y., Yan, Y., Zhang, S., Li, J. 2014. Wood/polymer nanocomposites prepared by impregnation with furfuryl alcohol and nano-SiO2. BioResources 9(4): 6028-6040.
  11. Dong, Y., Yan, Y., Zhang, S., Li, J., Wang, J. 2015. Flammability and physical-mechanical properties assessment of wood treated with furfuryl alcohol and nano-SiO2. European Journal of Wood and Wood Products 73(4): 457-464. https://doi.org/10.1007/s00107-015-0896-y
  12. Epmeier, H., Westin, M., Rapp, A. 2004. Differently modified wood: Comparison of some selected properties. Scandinavian Journal of Forest Research 19(sup 5): 31-37. https://doi.org/10.1080/02827580410017825
  13. Esteves, B., Nunes, L., Pereira, H. 2011. Properties of furfurylated wood (Pinus pinaster). European Journal of Wood and Wood Products 69(4): 521-525. https://doi.org/10.1007/s00107-010-0480-4
  14. Esteves, B.M., Pereira, H.M. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370-404. https://doi.org/10.15376/biores.4.1.370-404
  15. Gerardin, P. 2016. New alternatives for wood preservation based on thermal and chemical modification of wood: A review. Annals of Forest Science 73(3): 559-570. https://doi.org/10.1007/s13595-015-0531-4
  16. Hadi, Y.S., Darma, I.G.K.T., Febrianto, F., Herliyana, E.N. 1995. Acetylated rubberwood flakeboard resistance to bio-deterioration. Forest Products Journal 45(10): 64.
  17. Hadi, Y.S., Massijaya, M.Y., Abdillah, I.B., Pari, G., Arsyad, W.O.M. 2020. Color change and resistance to subterranean termite attack of mangium (Acacia mangium) and sengon (Falcataria moluccana) smoked wood. Journal of the Korean Wood Science and Technology 48(1): 1-11. https://doi.org/10.5658/WOOD.2020.48.1.1
  18. Hadi, Y.S., Massijaya, M.Y., Arinana, A. 2016. Subterranean termite resistance of polystyrene-treated wood from three tropical wood species. Insects 7(3): 37. https://doi.org/10.3390/insects7030037
  19. Hadi, Y.S., Massijaya, M.Y., Hermawan, D., Arinana, A. 2015. Feeding rate of termites in wood treated with borax, acetylation, polystyrene, and smoke. Journal of the Indian Academy of Wood Science 12(1): 74-80. https://doi.org/10.1007/s13196-015-0146-2
  20. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Abdillah, I.B., Arsyad, W.O.M. 2018. Resistance of methyl methacrylate-impregnated wood to subterranean termite attack. Journal of the Korean Wood Science and Technology 46(6): 748-755. https://doi.org/10.5658/WOOD.2018.46.6.748
  21. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Pari, R. 2019. Physical and mechanical properties of methyl methacrylate-impregnated wood from three fast-growing tropical tree species. Journal of the Korean Wood Science and Technology 47(3): 324-335. https://doi.org/10.5658/WOOD.2019.47.3.324
  22. Hadi, Y.S., Mulyosari, D., Herliyana, E.N., Pari, G., Arsyad, W.O.M., Abdillah, I.B., Gerardin, P. 2021. Furfurylation of wood from fast-growing tropical species to enhance their resistance to subterranean termite. European Journal of Wood and Wood Products 79(4): 1007-1015. https://doi.org/10.1007/s00107-021-01676-4
  23. Hadi, Y.S., Nawawi, D.S., Herliyana, E.N., Lawniczak, M. 1998. Termite attack resistance of four polystyrene-impregnated woods from Poland. Forest Products Journal 48(9): 60-62.
  24. Hadi, Y.S., Rahayu, I.S., Danu, S. 2013. Physical and mechanical properties of methyl methacrylate impregnated jabon wood. Journal of the Indian Academy of Wood Science 10(2): 77-80. https://doi.org/10.1007/s13196-013-0098-3
  25. Hadi, Y.S., Westin, M., Rasyid, E. 2005. Resistance of furfurylated wood to termite attack. Forest Products Journal 55(11): 85-88.
  26. Hrckova, M., Koleda, P., Koleda, P., Barcik, S., Stefkova, J. 2018. Color change of selected wood species affected by thermal treatment and sanding. BioResources 13(4): 8956-8975.
  27. Hunter Lab. 1996. Application note: Hunter color scale. Insight on Color 8(9): 1-4.
  28. Jia, Y., Fiedler, B. 2018. Influence of furfuryl alcohol fiber pre-treatment on the moisture absorption and mechanical properties of flax fiber composites. Fibers 6:59. https://doi.org/10.3390/fib6030059
  29. Karami, Z., Zohuriaan-Mehr, M.J., Rostami, A. 2018. Biobased Diels-Alder engineered network from furfuryl alcohol and epoxy resin: Preparation and mechano-physical characteristics. ChemistrySelect 3(1): 40-46. https://doi.org/10.1002/slct.201702387
  30. Lande, S., Eikenes, M., Westin, M., Schneider, M.H. 2008. Furfurylation of Wood: Chemistry, Properties, and Commercialization. In: Development of Commercial Wood Preservatives, American Chemical Society Symposium Series, Ed. by Schultz, T.P., Militz, H., Freeman, M.H., Goodell, B. and Nicholas, D.D. ACS Publications, Washington, DC, USA.
  31. Lande, S., Westin, M., Schneider, M. 2004. Properties of furfurylated wood. Scandinavian Journal of Forest Research 19(sup 5): 22-30. https://doi.org/10.1080/0282758041001915
  32. Li, W., Wang, H., Ren, D., Yu, Y., Yu, Y. 2015. Wood modification with furfuryl alcohol catalysed by a new composite acidic catalyst. Wood Science and Technology 49(4): 845-856. https://doi.org/10.1007/s00226-015-0721-0
  33. Mardikanto, T.R., Karlinasari, L., Bahtiar, E.T. 2011. Sifat Mekanis Kayu. IPB Press, Bogor, Indonesia.
  34. Martawijaya, A., Kartasujana, I., Mandang, Y.I., Prawira, S.A., Kadir, K. 1989. Atlas Kayu Indonesia, Jilid II. Pusat Penelitian dan Pengembangan Hasil Hutan, Bogor, Indonesia.
  35. Militz, H. 1993. Treatment of timber with water soluble dimethylol resins to improve their dimensional stability and durability. Wood Science and Technology 27(5):347-355. https://doi.org/10.1007/BF00192221
  36. Ministry of Environment and Forestry [MoEF]. 2020. Statistik Lingkungan Hidup dan Kehutanan Tahun 2019 (Statistics of Environment and Forestry 2019). Ministry of Environment and Forestry, Jakarta, Indonesia.
  37. Morozovs, A., Keke, A., Fisere, L., Spulle, U. 2018. Wood modification with furfuryl alcohol and furfurylated wood durability in water. In: Jelgava, Latvia, 17th International Scientific Conference Engineering for Rural Development, pp. 1445-1451.
  38. Pari, G. 1998. Zat Ekstraktif Kayu Sengon (Extractive of Sengon Wood). Perum Perhutani, Jakarta, Indonesia.
  39. Park, S., Park, B.D., 2021. Crystallinity of low molar ratio urea-formaldehyde resins modified with cellulose nanomaterials. Journal of the Korean Wood Science and Technology 49(2): 169-180. https://doi.org/10.5658/WOOD.2021.49.2.169
  40. Rahman, M.R., Hamdan, S., Lai, J.C.H., Jawaid, M., Yusof, F.A.M. 2017. Physico-mechanical, thermal and morphological properties of furfuryl alcohol/2-ethylhexyl methacrylate/halloysite nanoclay wood polymer nanocomposites (WPNCs). Heliyon 3(7): e00342. https://doi.org/10.1016/j.heliyon.2017.e00342
  41. Sandberg, D., Kutnar, A., Mantanis, G. 2017. Wood modification technologies: A review. iForest 10(6): 895-908. https://doi.org/10.3832/ifor2380-010
  42. Sejati, P.S., Imbert, A., Gerardin-Charbonnier, C., Dumarcay, S., Fredon, E., Masson, E., Nandika, D., Priadi, T., Gerardin, P. 2017. Tartaric acid catalyzed furfurylation of beech wood. Wood Science and Technology 51(2): 379-394. https://doi.org/10.1007/s00226-016-0871-8
  43. Siagian, R.M., Darmawan, S., Saepuloh, S. 1999. Chemical composition of Acacia mangium Wild at several ages harvested from first rotation growth. Buletin Penelitian Hasil Hutan 17(1): 57-66.
  44. Sumardi, I., Darwis, A., Saad, S., Rofii, M.N. 2020. Quality enhancement of falcataria-wood through impregnation. Journal of the Korean Wood Science and Technology 48(5): 722-731. https://doi.org/10.5658/WOOD.2020.48.5.722
  45. Szymona, K., Borysiuk, P., H'ng, P.S., Chin, K.L., Maminski, M. 2014. Valorization of waste oil palm (Elaeis guineensis Jacq.) biomass through furfurylation. Materials & Design 53: 425-429. https://doi.org/10.1016/j.matdes.2013.07.030
  46. Yunianti, A.D., Kidung, T.P., Suhasman, S., Taskirawati, I., Agussalim, A., Muin, M. 2019. Modified densification process for increasing strength properties of pine and gmelina wood from community forests. Journal of the Korean Wood Science and Technology 47(4): 418-424. https://doi.org/10.5658/WOOD.2019.47.4.418