DOI QR코드

DOI QR Code

스파크점화 엔진에서 압축비에 따른 프로판과 부탄의 연소 분석

Analysis of Propane and Butane Combustion in a Spark-Ignition Engine under Different Compression Ratio

  • Hyunwook, Park (한국기계연구원 모빌리티동력연구실) ;
  • Junsun, Lee (한국기계연구원 모빌리티동력연구실) ;
  • Seungmook, Oh (한국기계연구원 모빌리티동력연구실) ;
  • Changup, Kim (한국기계연구원 모빌리티동력연구실) ;
  • Yonggyu, Lee (한국기계연구원 모빌리티동력연구실) ;
  • Kernyong, Kang (한국기계연구원 모빌리티동력연구실)
  • 투고 : 2022.11.07
  • 심사 : 2022.11.15
  • 발행 : 2022.12.31

초록

Combustion and performance of a spark-ignition engine fueled with propane and butane were analyzed under different compression ratio. The electricity efficiencies of propane and butane increased with increasing the electricity production. The heat release rates of propane and butane were similar at a compression ratio of 9:1 because both fuels had similar optimal ignition timings without knocking combustion. Therefore, the difference in electricity efficiencies of engine generators was insignificant. However, at a higher compression ratio of 11:1, the butane engine generator had a lower electricity efficiency than the propane engine generator because its ignition timing retarded to suppress the knocking combustion.

키워드

과제정보

본 결과물은 농림축산식품부, 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음[1545024479] 421008-04.

참고문헌

  1. H. Park, J. Lee, S. Oh, C. Kim, Y. Lee and K. Kang, "Comparison of Lean Combustion Performance in a Spark-Ignition Engine Fueled with Natural Gas and Hydrogen", Journal of ILASS-Korea, Vol. 26, No. 4, 2021, pp. 204~211. https://doi.org/10.15435/JILASSKR.2021.26.4.204
  2. K. Thoday, P. Benjamin, M. Gan and E. Puzzolo, "The Mega Conversion Program from kerosene to LPG in Indonesia: Lessons learned and recommendations for future clean cooking energy expansion", Energy for Sustainable Development, Vol. 46, 2018, pp. 71~81. https://doi.org/10.1016/j.esd.2018.05.011
  3. L. Raslavicius, A. Kersys, S. Mockus, N. Kersiene and M. Starevicius, "Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport", Renewable and Sustainable Energy Reviews, Vol. 32, 2014, pp. 513~525. https://doi.org/10.1016/j.rser.2014.01.052
  4. W. G. Matthews, "Opportunities and challenges for petroleum and LPG markets in Sub-Saharan Africa", Energy Policy, Vol. 64, 2014, pp. 78~86. https://doi.org/10.1016/j.enpol.2013.07.092
  5. S. Baek, S. Lee, M. Shin, J. Lee and K. Lee, "Analysis of combustion and exhaust characteristics according to changes in the propane content of LPG", Energy, Vol. 239, 2022, p. 122297.
  6. E. Elnajjar, M. Y. Selim and M. O. Hamdan, "Experimental study of dual fuel engine performance using variable LPG composition and engine parameters", Energy conversion and Management, Vol. 76, 2013, pp. 32~42. https://doi.org/10.1016/j.enconman.2013.06.050
  7. M. Campbell, L. P. Wyszynski and R. Stone, "Combustion of LPG in a spark-ignition engine", SAE Transactions, 2004, pp. 628~637.
  8. T. Kar, T. Fosudo, A. Marchese, B. Windom and D. Olsen, "Effect of fuel composition and EGR on spark-ignited engine combustion with LPG fueling: Experimental and numerical investigation", Fuel, Vol. 327, 2022, p. 125221.
  9. X. Zhen, Y. Wang, S. Xu, Y. Zhu, C. Tao, T. Xu and M. Song, "The engine knock analysis-An overview", Applied Energy, Vol. 92, 2012, pp. 628~636. https://doi.org/10.1016/j.apenergy.2011.11.079
  10. H. Park, J. Lee, S. Oh, C. Kim, Y. Lee and K. Kang, "Analysis of energy losses in a natural gas spark ignition engine for power generation", Journal of ILASS-Korea, Vol. 25, No. 4, 2020, pp. 170~177. https://doi.org/10.15435/JILASSKR.2020.25.4.170
  11. H. Park, E. Shim, J. Lee, S. Oh, C. Kim, Y. Lee and K. Kang, "Large-squish piston geometry and early pilot injection for high efficiency and low methane emission in natural gas-diesel dual fuel engine at high-load operations", Fuel, Vol. 308, 2022, pp .122015.