DOI QR코드

DOI QR Code

Thomson Effect in Magneto-Thermoelastic Material with Hyperbolic two temperature and Modified Couple Stress Theory

  • Iqbal, Kaur (Department of Mathematics, Government College for Girls) ;
  • Kulvinder, Singh (Faculty of Engineering, UIET, Kurukshetra University Kurukshetra)
  • Received : 2021.11.24
  • Accepted : 2022.12.12
  • Published : 2022.12.25

Abstract

This research deals with the study of the Thomson heating effect in magneto-thermoelastic homogeneous isotropic rotating medium, influenced by linearly distributed load and as a result of modified couple stress theory. The charge density is taken as a function of the time of the induced electric current. The heat conduction equation with energy dissipation and with hyperbolic two-temperature (H2T) is used to formulate the model of the problem. Laplace and Fourier transforms are used to solve this mathematical model. Various components of displacement, temperature change, and axial stress as well as couple stress are obtained from the transformed domain. To get the solution in physical domain, numerical inversion techniques have been employed. The Thomson effect with GN (Green-Nagdhi) -III theory and Modified Couple Stress Theory (MCST) is shown graphically on the physical quantities.

Keywords

References

  1. Abbaspour, F. and Arvin, H. (2021), "Buckling treatment of piezoelectric functionally graded graphene platelets micro plates", Steel Compos. Struct., 38(3), 337-353. https://doi.org/https://doi.org/10.12989/scs.2021.38.3.337. Abd-Elaziz, E.M. and Hilal, M.I.M. (2018), "The influence
  2. Thomson effect and inclined loads in an electro-magneto-thermoelastic solid with voids under green-Naghdi theories", J. Ocean Eng. Sci., 3(3), 253-264. https://doi.org/10.1016/j.joes.2018.08.003.
  3. Abd-Elaziz, E., Marin, M. and Othman, M. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory", Symmetry, 11(3), 413. https://doi.org/10.3390/sym11030413.
  4. Abd-Elaziz, E.M. and Othman, M.I.A. (2019), "Effect of Thomson and thermal loading due to laser pulse in a magneto-thermo-elastic porous medium with energy dissipation", ZAMM - J. Appl. Mathem. Mech. / Zeitschrift Fur Angewandte Mathematik Und Mechanik, 99(8). https://doi.org/10.1002/zamm.201900079.
  5. Abouelregal, A.E. and Marin, M. (2020a), "The size-dependent thermoelastic vibrations of nanobeam subjected to harmonic excitation and rectified sine wave heating", Mathematics, 8(7), 1128. https://doi.org/10.3390/math8071128.
  6. Abouelregal, A.E. and Marin, M. (2020b), "The response of nanobeams with temperature-dependent properties using states-pace method via modified couple stress theory", Symmetry, 12(8), 1276. https://doi.org/10.3390/sym12081276.
  7. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369.
  8. Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. https://doi.org/https://doi.org/10.12989/scs.2018.26.1.089.
  9. Anatychuk, L.I. and Luste, O.J. (2003), "Generalized thermoelectric Thomson relations", Proceedings ICT'03. 22nd International Conference on Thermoelectrics (IEEE Cat. No.03TH8726), 491-492. https://doi.org/10.1109/ICT.2003.1287555.
  10. Arani, A.G. and Kiani, F. (2018), "Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions", Steel Compos. Struct., 28(2), 149-165. https://doi.org/https://doi.org/10.12989/scs.2018.28.2.149.
  11. Bhatti, M.M., Arain, M.B., Zeeshan, A., Ellahi, R. and Doranehgard, M.H. (2022), "Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage", J. Energy Storage, 45, 103511. https://doi.org/10.1016/j.est.2021.103511.
  12. Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Archive Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1.
  13. Cosserat, E. and Cosserat, F. (1909), "Theorie des Corps deformables", Nature, 81(2072), 67. https://doi.org/10.1038/081067a0.
  14. Craciun, E.M., Baesu, E. and Soos, E. (2004), "General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: application to Mode III fracture propagation.", IMA J. Appl. Mathem., 70(1), 39-52. https://doi.org/10.1093/imamat/hxh060.
  15. Craciun, E.M. and Barbu, L. (2015), "Compact closed form solution of the incremental plane states in a pre-stressed elastic composite with an elliptical hole", ZAMM - J. Appl. Mathem. Mech. / Zeitschrift Fur Angewandte Mathematik Und Mechanik, 95(2), 193-199. https://doi.org/10.1002/zamm.201300125.
  16. GrĂciun, E.M. and Soos, E. (1998), "Interaction of two unequal cracks in a prestressed fiber reinforced composite", Int. J. Fract., 94, 137-159. https://doi.org/https://doi.org/10.1023/A:1007549317153.
  17. Kaur, I., Lata, P. and Singh, K. (2020a), "Effect of memory dependent derivative on forced transverse vibrations in transversely isotropic thermoelastic cantilever nano-Beam with two temperature", Appl. Mathem. Modelling, 88, 83-105. https://doi.org/10.1016/j.apm.2020.06.045.
  18. Kaur, I., Lata, P. and Singh, K. (2020b), "Forced flexural vibrations in a thin nonlocal rectangular plate with Kirchhoff's thin plate theory", Int. J. Struct. Stab. Dyn., 20(9). https://doi.org/10.1142/S0219455420501072.
  19. Kaur, I., Lata, P. and Singh, K. (2020c), "Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures", Int. J. Mech. Mater. Eng., 15(1). https://doi.org/10.1186/s40712-020-00122-2.
  20. Kaur, Iqbal, Lata, P. and Singh, K. (2021), "Study of transversely isotropic nonlocal thermoelastic thin nano-beam resonators with multi-dual-phase-lag theory", Archive Appl. Mech., 91(1), 317-341. https://doi.org/10.1007/s00419-020-01771-7.
  21. Koiter, W.T. (1969), "Couple-stresses in the theory of elasticity, I & II", Philosoph. Transact. Royal Soc. London B, 67, 17-44.
  22. Lata, P., Kaur, I. and Singh, K. (2020), "Deformation in transversely isotropic thermoelastic thin circular plate due to multi-dual-phase-lag heat transfer and time-harmonic sources", Arab J. Basic Appl. Sci., 27(1), 259-269. https://doi.org/10.1080/25765299.2020.1781328.
  23. Lata, P., Kaur, I. and Singh, K. (2021), "Reflection of plane harmonic wave in transversely isotropic magneto-thermoelastic with two temperature, rotation and multi-dual-phase lag heat transfer", Lecture Notes Networks Syst., 140. https://doi.org/10.1007/978-981-15-7130-5_42.
  24. Lata, Parveen and Kaur, I. (2019), "Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate", Geomech. Eng., 19(1), 29-36. https://doi.org/10.12989/GAE.2019.19.1.029.
  25. Lata, Parveen, Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35(3), 343-351. https://doi.org/https://doi.org/10.12989/scs.2020.35.3.343.
  26. Lata, Parveen, Kaur, I. and Singh, K. (2021), "Transversely isotropic Euler Bernoulli thermoelastic nanobeam with laser pulse and with modified three phase lag Green Nagdhi heat transfer", Steel Compos. Struct., 40(6), 829-838. https://doi.org/https://doi.org/10.12989/scs.2021.40.6.829.
  27. Lotfy, K. and El-Bary, A.A. (2020), "Thomson effect in thermo-electro-magneto semiconductor medium during photothermal excitation process", Waves Random Complex Media, 1-19. https://doi.org/10.1080/17455030.2020.1838665.
  28. Lotfy, K., Hassan, W., El-Bary, A.A. and Kadry, M.A. (2020), "Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation", Results Phys., 16, 102877. https://doi.org/10.1016/j.rinp.2019.102877.
  29. Marin, M., Codarcea, L. and Chirila, A. (2017), "Qualitative results on mixed problem of micropolar bodies with microtemperatures", Applcation. Appl. Mathem. Int. J. (AAM), 12(2), 776-789.
  30. Marin, M. and Ochsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continuum Mech. Thermodyn., 29(6), 1365-1374. https://doi.org/10.1007/s00161-017-0585-7.
  31. Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations - Main features of cosserat theory are reviewed by lecturer and some recent solutions of the equations, for cases of stress concentration around small holes in elastic solids, are described", Experiment. Mech., 3(1), 1-7. https://doi.org/10.1007/BF02327219.
  32. Nazar, T., Bhatti, M.M. and Michaelides, E.E. (2022), "Hybrid (Au-TiO2) nanofluid flow over a thin needle with magnetic field and thermal radiation: dual solutions and stability analysis", Microfluid. Nanofluid., 26(1), 2. https://doi.org/10.1007/s10404-021-02504-0.
  33. Othman, M.I.A., Said, S. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with threephase-lag model", Int. J. Numerical Meth. Heat Fluid Flow, 29(12), 4788-4806. https://doi.org/10.1108/HFF-04-2019-0359.
  34. Sadoughifar, A., Farhatnia, F., Izadinia, M. and Tal, S.B. (2019), "Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM", Steel Compos. Struct., 33(2), 307-318. https://doi.org/10.12989/scs.2019.33.2.307
  35. Sadowski, T., Craciun, E.M., Rabaea, A. and Marsavina, L. (2016), "Mathematical modeling of three equal collinear cracks in an orthotropic solid", Meccanica, 51(2), 329-339. https://doi.org/10.1007/s11012-015-0254-5.
  36. Scutaru, M.L., Vlase, S., Marin, M. and Modrea, A. (2020), "New analytical method based on dynamic response of planar mechanical elastic systems", Bound. Value Prob., 2020(1), 104. https://doi.org/10.1186/s13661-020-01401-9.
  37. Sherief, H.H. and Anwar, M.N. (1986), "Problem in generalized thermoelasticity", J. Thermal Stresses, 9(2), 165-181. https://doi.org/10.1080/01495738608961895.
  38. Singh, A., Das, S., Altenbach, H. and Craciun, E. M. (2020), "Semi-infinite moving crack in an orthotropic strip sandwiched between two identical half planes", ZAMM - J. Appl. Mathem. Mech. / Zeitschrift Fur Angewandte Mathematik Und Mechanik, 100(2). https://doi.org/10.1002/zamm.201900202.
  39. Thomson, W. (1857), "On a mechanical theory of thermo-electric currents", Proceedings of the Royal Society of Edinburgh, 3, 91-98. https://doi.org/10.1017/S0370164600027310.
  40. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1996), Numerical Recipes in Fortran 90: Numerical recipes in Fortran 77V. 2. Numerical recipes in Fortran 90. Cambridge University Press.
  41. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  42. Youssef, H.M. and El-Bary, A.A. (2018), "Theory of hyperbolic two-temperature generalized thermoelasticity", Mater. Phys. Mech., 40(2). https://doi.org/10.18720/MPM.4022018_4.
  43. Zhang, L., Bhatti, M.M., Michaelides, E.E., Marin, M. and Ellahi, R. (2022), "Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field", Europ. Phys. J. Spec. Topics, 231(3), 521-533. https://doi.org/10.1140/epjs/s11734-021-00409-1.