DOI QR코드

DOI QR Code

Cellulose Asymmetric Carbon Hollow Fiber Membrane Controlled by Radiation and Heat Treatment Conditions

방사 및 열처리 조건에 의해 제어된 셀룰로스계 비대칭 탄소 중공사막

  • In-Ju, Jang (Department of Carbon Composites Convergence Materials Engineering) ;
  • Hyun-Jae, Cho (Department of Carbon Composites Convergence Materials Engineering) ;
  • Young-Hoon, Seo (Research and Development, HUVIS) ;
  • Yong-Sik, Chung (Department of Division of Polymer-nano & Textile Engineering/Organic Materials and Textile Engineering)
  • 장인주 (전북대학교 탄소융복합재료공학과) ;
  • 조현재 (전북대학교 탄소융복합재료공학과) ;
  • 서영훈 ((주)휴비스) ;
  • 정용식 (전북대학교 유기소재섬유공학전공)
  • Received : 2022.12.07
  • Accepted : 2022.12.24
  • Published : 2022.12.31

Abstract

This study investigated the effect of spinning and heat treatment conditions on the cellulose carbon hollow fiber membrane. A cellulose-based asymmetric carbon hollow fiber membrane has been prepared by wet spinning process and heat treatment. Cellulose was dissolved using EmimAc/DMSO and discharged in a coagulation bath at 60℃ to form asymmetric pores. To maintain the formed asymmetric pores even after the drying process, there was a stepped exchange process of solvent for the elimination of water in the fiber. The formed asymmetric pores are composed of a selective layer with dense pores and a support layer with finger-like pores. These asymmetric pores are important structures for increasing the selectivity and permeability of the carbon hollow fiber membrane. The pore structure according to the heat treatment temperature was analyzed. Because the pore size and micropores are controlled by the heat treatment condition, we applied different temperatures (550-850℃) in the heat treatment process. It was confirmed by BET that the surface area and pore size distribution improved 18.5%. As a result, it was confirmed that the structure and pore size of the cellulose carbon hollow fiber membrane were significantly affected by the spinning, solvent exchange, and heat treatment process conditions.

Keywords

References

  1. C. Lin, G. Msigwa, M. Yang, A. I. Osman, S. Fawzy, D. W. Rooney, and P.-S. Yap, "Strategies to Achieve A Carbon Neutral Society: A Review", Environ. Chem. Lett., 2022, 20, 2277-2310. https://doi.org/10.1007/s10311-022-01435-8
  2. D. Broadstock, Q. Ji, S. Managi, and D. Zhang, "Pathways to Carbon Neutrality: Challenges and Opportunities", Resour. Conserv. Recycl., 2021, 169, 105472.
  3. D. A. J. Rand and R. M. Dell, "Hydrogen Energy: Challenges and Prospects", Royal Society of Chemistry, 2007, pp.34-46.
  4. M. Noussan, P. P. Raimondi, R. Scita, and M. Hafner, "The Role of Green and Blue Hydrogen in the Energy Transition-A Technological and Geopolitical Perspective", Sustainability, 2021, 13, 298.
  5. H. Ishaq, I. Dincer, and C. Crawford, "A Review on Hydrogen Production and Utilization: Challenges and Opportunities", Int. J. Hydrog. Energy, 2022, 47, 26238-26264. https://doi.org/10.1016/j.ijhydene.2021.11.149
  6. S. Kluiters, "Status Review on Membrane Systems for Hydrogen Separation", Energy Center of the Netherlands, Petten, The Netherlands, 2004.
  7. M. Shan, X. Liu, X. Wang, I .Yarulina, B. Seoane, F. Kapteijn, and J. Gascon, "Facile Manufacture of Porous Organic Framework Membranes for Precombustion CO2 Capture", Sci. Adv., 2018, 4, eaau1698.
  8. W. Liemberger, M. Gross, M. Miltner, and M. Harasek, "Experimental Analysis of Membrane and Pressure Swing Adsorption (PSA) for the Hydrogen Separation from Natural Gas", J. Clean. Prod., 2017, 167, 896-907. https://doi.org/10.1016/j.jclepro.2017.08.012
  9. T. T. Vo, D. M. Wall, D. Ring, K. Rajendran, and J. D. Murphy, "Techno-economic Analysis of Biogas Upgrading via Amine Scrubber, Carbon Capture and Ex-situ Methanation", Appl. Energy, 2018, 212, 1191-1202. https://doi.org/10.1016/j.apenergy.2017.12.099
  10. B. Wang, H. Jin, W. Han, and D. Zheng, "IGCC System with Integration of CO2 Recovery and the Cryogenic Energy in air Separation Unit", Turbo Expo: Power for Land, Sea, and Air, 2004, 909191.
  11. H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, and S. Kwon, "Selective Gas Transport Through Few-layered Graphene and Graphene Oxide Membranes", Science, 2013, 342, 91-95. https://doi.org/10.1126/science.1236098
  12. Y. Li, F. Liang, H. Bux, W. Yang, and J. Caro, "Zeolitic Imidazolate Framework ZIF-7 Based Molecular Sieve Membrane for Hydrogen Separation", J. Membr. Sci., 2010, 354, 48-54. https://doi.org/10.1016/j.memsci.2010.02.074
  13. A. Achari, S. Sahana, and M. Eswaramoorthy, "High Performance MoS2 Membranes: Effects of Thermally Driven Phase Transition on CO2 Separation Efficiency", Energy Environ. Sci., 2016, 9, 1224-1228. https://doi.org/10.1039/c5ee03856a
  14. L. Zhu, M. T. Swihart, and H. Lin, "Unprecedented Sizesieving Ability in Polybenzimidazole Doped with Polyprotic Acids for Membrane H2/CO2 Separation", Energy Environ. Sci., 2018, 11, 94-100. https://doi.org/10.1039/c7ee02865b
  15. X. Gao, X. Zou, H. Ma, S. Meng, and G. Zhu, "Highly Selective and Permeable Porous Organic Framework Membrane for CO2 Capture", Adv. Mater., 2014, 26, 3644-3648. https://doi.org/10.1002/adma.201400020
  16. Y. Pan, L. He, Y. Ren, W. Wang, and T. Wang, "Analysis of Influencing Factors on the Gas Separation Performance of Carbon Molecular Sieve Membrane Using Machine Learning Technique", Membranes, 2022, 12, 100.
  17. S. Xu, N. Zhao, L. Wu, S. Kang, Z. Zhang, G. Huo, Z. Dai, and N. Li, "Carbon Molecular Sieve Gas Separation Membranes from Crosslinkable Bromomethylated 6FDA-DAM Polyimide", J. Membr. Sci., 2022, 659, 120781.
  18. Y. Chen and R. Yang, "Preparation of Carbon Molecular Sieve Membrane and Diffusion of Binary Mixtures in the Membrane", Ind. Eng. Chem. Res., 1994, 33, 3146-3153. https://doi.org/10.1021/ie00036a033
  19. J. W. F. To, J. J. He, J. G. Mei, R. Haghpanah, Z. Chen, T. Kurosawa, and S. C. Chen, "Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor", J. Am. Chem. Soc., 2016, 138, 1001-1009. https://doi.org/10.1021/jacs.5b11955
  20. S. C. Rodrigues, M. Andrade, J. Moffat, F. D. Magalhaes, and A. Mendes, "Preparation of Carbon Molecular Sieve Membranes from an Optimized Ionic Liquid-regenerated Cellulose Precursor", J. Membr. Sci., 2019, 572, 390-400. https://doi.org/10.1016/j.memsci.2018.11.027
  21. C. Pan, "Gas Separation by High-flux, Asymmetric Hollow-fiber Membrane", AIChE J., 1986, 32, 2020-2027. https://doi.org/10.1002/aic.690321212
  22. R. J. Ray, W. B. Krantz, and R. L. Sani, "Linear Stability Theory Model for Finger Formation in Asymmetric Membranes", J. Membr. Sci., 1985, 23, 155-182. https://doi.org/10.1016/S0376-7388(00)82216-4
  23. C. H. Loh and R. Wang, "Effects of Additives and Coagulant Temperature on Fabrication of High Performance PVDF/Pluronic F127 Blend Hollow Fiber Membranes via Nonsolvent Induced Phase Separation", Chinese J. Chem. Eng., 2012, 20, 71-79. https://doi.org/10.1016/S1004-9541(12)60365-6
  24. S. A. Siddiqui and H. L. Needles, "Solubility Parameters", Text. Res. J., 1982, 52, 570-579. https://doi.org/10.1177/004051758205200904
  25. X. Jie, Y. Cao, J.-J. Qin, J. Liu, and Q. Yuan, "Influence of Drying Method on Morphology and Properties of Asymmetric Cellulose Hollow Fiber Membrane", J. Membr. Sci., 2005, 246, 157-165. https://doi.org/10.1016/j.memsci.2004.08.007
  26. X. Zhang, W. Yang, and C. Dong, "Levoglucosan Formation Mechanisms during Cellulose Pyrolysis", J. Anal. Appl. Pyrol., 2013, 104, 19-27. https://doi.org/10.1016/j.jaap.2013.09.015
  27. J. Hoekstra, A. M. Beale, F. Soulimani, M. Versluijs-Helder, J. W. Geus, and L. W. Jenneskens "Base Metal Catalyzed Graphitization of Cellulose: A Combined Raman Spectroscopy Temperature-dependent X-ray Diffraction and High-resolution Transmission Electron Microscopy Study", J. Phys. Chem. C, 2015, 119, 10653-10661. https://doi.org/10.1021/acs.jpcc.5b00477
  28. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, "Studying Disorder in Graphite-based Systems by Raman Spectroscopy", Phys. Chem. Chem. Phys., 2007, 9, 1276-1290. https://doi.org/10.1039/b613962k
  29. C. G. Pope, "X-ray Diffraction and the Bragg Equation", J. Chem. Ed., 1997, 74, 129.