DOI QR코드

DOI QR Code

A Study on the Flame Retardancy Improvement Mechanism of Cotton Fabrics Through the Formation of Multi-layers of Polyacrylic Acid and Calcium Phosphate

폴리아크릴산과 인산칼슘의 다층 레이어 형성을 통한 면직물의 난연성 향상 기구의 연구

  • Hong Chan, Lee (Department of Electric and Electronic Engineering, Jungwon University) ;
  • Shichoon, Lee (Department of Materials Science and Engineering, Jungwon University)
  • 이홍찬 (중원대학교 전기전자공학과) ;
  • 이시춘 (중원대학교 신소재공학과)
  • Received : 2022.12.09
  • Accepted : 2022.12.23
  • Published : 2022.12.31

Abstract

Cotton fabrics with improved flame retardancy were manufactured by introducing calcium phosphate groups into cotton fabrics using the LBL (Layer-by-layer deposition) method in which polyacrylic acid is used as one layer, and the flame retardant mechanism was studied. As a result of scanning electron microscopy, the shape of the fabrics and cotton fiber not treated with LBL was destroyed, but the shape of the fabrics and the shape of the fibers were maintained in the LBL-treated cotton fabric. In the flame retardancy test of the LBL-treated fabrics, it was observed that numerous nanoparticles with a size of 40-60 nm were formed on the surface of the cotton fiber. In XPS (X-ray photoelectron spectroscopy) analysis, it can be confirmed that nanoparticles of calcium phosphate are generated by the reaction between phosphoric acid and calcium. This result shows that flame retardancy was improved by a mechanism in which an incombustible calcium phosphate layer is formed by a reaction between phosphoric acid and a calcium metal salt, as well as an increase in char formation of cellulose by phosphoric acid. XRD (X-ray diffraction analysis) confirmed that the nanoparticles produced were hydroxyapatite calcium phosphate. This result is significant in suggesting a new method for preparing hydroxyapatite nanoparticles by an environmentally friendly LBL method.

Keywords

Acknowledgement

이 성과는 2021년도 중원대학교 연구년 지원을 받아 수행된 연구임.

References

  1. A. R. Horrocks, B. K. Kandola, P. J. Davies, S. Zhang, and S. A. Padbury, "Developments in Flame Retardant Textiles - A Review", Polym. Degrad. Stab., 2005, 88, 3-12. https://doi.org/10.1016/j.polymdegradstab.2003.10.024
  2. A. R. Horrocks, "Flame Retardant Challenges for Textiles and Fibres: New Chemistry Versus Innovatory Solutions", Polym. Degrad. Stab., 2011, 96, 377-392. https://doi.org/10.1016/j.polymdegradstab.2010.03.036
  3. Z. Yang, X. Wang, D. Lei, B. Fei, and J. H. Xin, "A Durable Flame Retardant and Stability", Polym. Degrad. Stab., 2012, 97, 2467-2472. https://doi.org/10.1016/j.polymdegradstab.2012.05.023
  4. S. V. Levchik and E. D. Wei, "A Review of Recent Progress in Phosphorous-based Flame Retardant", J. Fire Sci., 2006, 24, 345-364. https://doi.org/10.1177/0734904106068426
  5. F. Laoutid, L. Bonnaud, M. Alexandre, J.-M.Lopez-Cuesta, and P. Dubois, "New Prospects in Flame Retardant Polymer Materials: From Fundamentals to Nanocomposites", Mater. Sci. Eng., 2009, R 63, 100-123.
  6. D. W. van Krevelen, "Properties of Polymers", 4th Ed., Elsevier, B.V., Amsterdam, 2009, pp.847-873.
  7. B. N. Jang and J. Choi, "Research Trends of Flame Retardant and Flame Retardant Resin", Polym. Sci. Technol., 2009, 20, 8-15.
  8. B. Li and M. Xu, "Effect of a Novel Charring Foaming Agent on Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Polypropylene", Polym. Degrad. Stab., 2006, 91, 1380-1386. https://doi.org/10.1016/j.polymdegradstab.2005.07.020
  9. N. Illy, M. Fache, R. Menard, C. Negrell, S. Caillol, and G. David, "Phosphorylation of Bio-based Compounds: the State of the Art", Polym. Chem. 2015, 6, 6257-6291. https://doi.org/10.1039/C5PY00812C
  10. K. A. Sameia and S. Gaan, "An Overview of Some Recent Advances in DOPO-derivatives: Chemistry and Flame Retardant Applications", Polym. Degrad. Stab., 2015, 113, 119-134. https://doi.org/10.1016/j.polymdegradstab.2014.12.014
  11. D. D. Jiang, Q. Yao, M. A. Mckinny, and C. A. Wilkie, "TGA/FTIR Studies on the Thermal Degradation of Some Polymeric Sulfonic and Phosphonic Acids and Their Sodium Salts", Polym. Degrad. Stab., 1999, 63, 423-434. https://doi.org/10.1016/S0141-3910(98)00123-2
  12. A. S. Politou, C. Morterra, and M. I. D. Low, "Infrared Studies of Carbons. XII. The Formation of Char from a Polycarbonate", Carbon, 1990, 28, 529-538. https://doi.org/10.1016/0008-6223(90)90049-5
  13. S. Gaan and G. Sun, "Effect of Nitrogen Additives on Thermal Decomposition of Cotton", J. Anal. Appl. Pyrolysis, 2009, 84, 108-115. https://doi.org/10.1016/j.jaap.2008.12.004
  14. N. Illy, M. Fache, R. Me'nard, C. Negrell, S. Caillol, and G. David, "Phosphorylation of Bio-based Compounds: The State of The Art", Polym. Chem., 2015, 6, 6257-6291. https://doi.org/10.1039/C5PY00812C
  15. G. C. Tesoro and C. H. Meiser, "Some Effects of Chemical Composition on the Flammability Behavior of Textiles", Text. Res. J., 1970, 40, 430-436. https://doi.org/10.1177/004051757004000506
  16. S. H. Chiu and W. K. Wang, "Dynamic Flame Retardancy of Polypropylene Filled with Ammonium Polyphosphate, Pentaerythritol and Melamine Additives", Polym., 1998, 39, 1951-1955. https://doi.org/10.1016/S0032-3861(97)00492-8
  17. W. Wu and C. Q. Yang, "Comparison of DMDHEU and Melamine-Formaldehyde as the Binding Agents for a Hydroxy-Functional Organophosphorus Flame Retarding Agent on Cotton", J. Fire Sci., 2004, 22, 125-142. https://doi.org/10.1177/0734904104039695
  18. A. R. Horrocks and S. Zhang, "Enhancing Polymer Flame Retardancy by Reaction with Phosphorylated Polyols. Part 2. Cellulose Treated with a Phosphonium Salt Urea Condensate (proban CC(R)) Flame Retardant", Fire Mater., 2002, 26, 173-182. https://doi.org/10.1002/fam.794
  19. H. C. Lee and S. Lee, "Flame Retardancy for Cotton Cellulose Treated with H3PO3", J. Appl. Poly. Sci., 2018, 46497, 1-9.
  20. H. C. Lee and S. Lee, "Improvement of Flame Retardancy of Polycarbonate with Ionic Liquid Addition", Text. Sci. Eng., 2016, 53, 442-448. https://doi.org/10.12772/TSE.2016.53.442
  21. M. Lji and S. Serizawa, "Silicone Derivatives as New Flame Retardants for Aromatic Thermoplastics Used in Electronic Devices", Polym. Adv. Thechnol., 1998, 9, 593-600. https://doi.org/10.1002/(SICI)1099-1581(1998100)9:10/11<593::AID-PAT810>3.0.CO;2-U
  22. T. Ishikawa, I. Maki, T. Koshizuka, T. Ohkawa, and K. Takeda, "Effect of Perfluoroalkane Sulfonic Acid on the Flame Retardancy of Polycarbonate", J. Macromol. Sci. Part A: Pure Appl. Sci., 2004, A41, 523-535.
  23. Z. Sui, D. Salloum, and J. B. Schlenoff, "Effect of Molecular Weight on the Construction of Polyelectrolyte Multilayers: Stripping Versus Sticking", Langmuir, 2003, 19, 2491-2495. https://doi.org/10.1021/la026531d
  24. L. Chang, X. Kong, F. Wang, L. Wang, and J. Shen, "Layer-by-layer Assembly of Poly(N-acryloyl-N'-propylpiperazine) and Poly(acrylic acid): Effect of pH and Temperature", Thin Solid Films, 2008, 516, 2125-2129. https://doi.org/10.1016/j.tsf.2007.07.188
  25. Y.-C. Li, J. Schulz, S. Mannen, C. Delhom, B. Condon, S. Chang, M. Zammarano, and J. C. Grunlan, "Flame Retardant Behavior of Polyelectrolyte-Clay Thin Film Assemblies on Cotton Fabric", ACS Nano, 2010, 4, 3325-3337. https://doi.org/10.1021/nn100467e
  26. Y.-C. Li, J. Schulz, and J. C. Grunlan, "Polyelectrolyte/Nanosilicate Thin-Film Assemblies: Influence of pH on Growth, Mechanical Behavior, and Flammability", ACS Appl. Mater. Interfaces, 2009, 1, 2338-2347. https://doi.org/10.1021/am900484q
  27. S. Zhang and A. R. Horrocks, "A Review of Flame Retardant Propylene Fibers", Prog. Polym. Sci., 2008, 28, 1517-1538. https://doi.org/10.1016/j.progpolymsci.2003.09.001
  28. H. Ju, X. Feng, Y. Ye, L. Zhang, H. Pan, C. T. Campbell, and J. Zhu, "Ca Carboxylate Foramtion at the Calcium/Poly(methyl-methacryalate) Interface", J. Phys. Chem. C, 2012, 116, 20465-20471. https://doi.org/10.1021/jp307010x
  29. Sunarso, A. Tsuchiya, R. Toita, K. Tsuru, and K. Ishikawa, "Enhanced Osseointegration Capability of Poly(ether ether ketone) via Combined Phosphate and Calcium Surface-Functionalization", Int. J. Mol. Sci., 2020, 21, 1-13.
  30. H. C. Lee and S. Lee, "Enhancing Flame Retardancy of Cotton Fabrics via Formation of Layer-by-layer Assemblies of Polyacrylic Acid and Calcium Phosphate", Text. Sci. Eng., 2020, 57, 271-280. https://doi.org/10.12772/TSE.2020.57.271
  31. Q.-X. Dong, Q.-J. Chen, W. Yang, Y.-L. Zheng, X. Liu, Y.-L. Li, and M.-B. Yang, "Thermal Properties and Flame Retardancy of Polycarbonate/Hydroxyapatite Nanocomposite", J. Appl. Polym. Sci., 2008, 109, 659-663. https://doi.org/10.1002/app.28053
  32. Y. Yao, F. Chen, A. Nie, S. D. Lacey, R. J. Jacob, S. Xu, Z. Huang, K. Fu, J. Dai, L. Salamanca-Riba, M. R. Zachariah, R. Shahbazian-Yassar, and L. Hu, "In Situ High Temperature Synthesis of Single-Component Metallic Nanoparticles", ACS Cent. Sci., 2017, 3, 294-301. https://doi.org/10.1021/acscentsci.6b00374
  33. S. Gaan and G. Sun, "Effect of Nitrogen Additives on Thermal Decomposition of Cotton", J. Anal. Appl. Pyrolysis, 2009, 84, 108-115. https://doi.org/10.1016/j.jaap.2008.12.004
  34. C. M. Zamudio-Ortega, R. Contreras-Bulnes, R. J. ScougallVilchis, R. A. Morales-Luckie, O. F. Olea-Mejia, and L. E. Rodriguez-Vilchis, "Morphological, Chemical and Structural Characterization of Deciduous Enamel: SEM, EDS, XRD, FTIR and XPS Analysis", Eur. J. Paediatr. Dent., 2014, 15, 275-280. https://doi.org/10.1007/s40368-014-0112-5
  35. W. Lie, D.-Q. Chen, Y.-Z. Wang, D.-Y. Wang, and M.-H. Qu, "Char-forming Mechanism of a Novel Polymeric Flame Retardant with Char Agent", Polym. Degrad. Stab., 2007, 92, 1046-1052. https://doi.org/10.1016/j.polymdegradstab.2007.02.009
  36. L. Berzina-Cimdina and N. Borodajenko, "Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy, Infrared Spectroscopy - Materials Science, Engineering and Technology", InTech Published Online, 2012, pp.123-148.
  37. J. Copikova, A. Synytsya, M. Cerna, J. Kaasova, and M. Novotna, "Application of FT-IR Spectroscopy in Detection of Food Hydrocolloids in Confectionery Jellies and Food Supplements", Czech J. Food Sci., 2001, 19, 51-56. https://doi.org/10.17221/6575-cjfs
  38. K. L. S. Castro, R. V. Curti, J. R. Araujo, S. M. Landi, E. H. M. Ferreira, R. S. Neves, A. Kuznetsov, L. A. Sena, B. S. Archanjo, C. A. AcheteKelly, L. S. Castro, R. V. Curti, J. R. Araujo, S. M. Landi, E. H. M. Ferreira, R. S. Neves, A. Kuznetsov, L. A. Sena, B. S. Archanjo, and C. A. Achete, "Calcium Incorporation in Graphene Oxide Particles: A Morphological, Chemical, Electrical, and Thermal Study", Thin Solid Films, 2016, 610, 10-18. https://doi.org/10.1016/j.tsf.2016.04.042
  39. J. Kalembkiewicz, D. Galas, and E. Sitarz-Palczak, "The Physicochemical Properties and Composition of Biomass Ash and Evaluating Directions of Its Applications", Pol. J. Environ. Stud., 2018, 27, 1-11. https://doi.org/10.15244/pjoes/74130
  40. M. C. Chang and J. Tanaka, "XPS Study for the Microstructure Development of Hydroxyapatite-collagen Nanocomposites Cross-linked Using Glutaraldehyde", Biomaterials, 2002, 23, 3879-3885. https://doi.org/10.1016/S0142-9612(02)00133-3
  41. M. J. van Stipdonk, D. R. Justes, and E. A. Schweikert, "Calcium Phosphate Phase Identification Using XPS and Time-of-Flight Cluster SIMS", Anal. Chem., 1999, 71, 149-153. https://doi.org/10.1021/ac9806963
  42. S. M. Londono-Restrepo, R. Jeronimo-Cruz, B. M. MillanMalo, E. M. Rivera-Munoz, and M. E. Rodriguez-Garcia, "Effect of the Nano Crystal Size on the X-ray Diffraction Patterns of Biogenic Hydroxyapatite from Human, Bovine, and Porcine Bones", Sci. Rep., 2019, 9, 5915.
  43. J. M. Sanchez de Va, P. Mazon, A. Piattelli, J. Calvo-Guirado, J. M. Bueno, J. G. Marin, and P. De Aza, "Comparison among the Physical Properties of Calcium Phosphate-based Bone Substitutes of Natural or Synthetic Origin", Int. J. Appl. Ceram. Technol. 2018, 15, 930-937. https://doi.org/10.1111/ijac.12860
  44. L. D. Guillen-Romero, M. T. Oropeza-Guzman, E. A. Lopez-Maldonado, A. L. Iglesias, J. A. Paz-Gonzalez, T. Ng, E. Serena-Gomez, and L. J. Villarreal-Gomez, "Synthetic Hydroxyapatite and Its Use in Bioactive Coatings", J. Appl. Biomat. Funct. Mater., 2019, 17. doi: 10.1177/2280800018817463.
  45. O. Gonultas and Z. Candan, "Chemical Characterization and FTIR Spectroscopy of Thermally Compressed Eucalyptus Wood Panela", Maderas. Ciencia y tecnologia, 2018, 20, 431-442.
  46. R. Kotian, P. P. Rao, and P. Madhyastha, "X-ray Diffraction Analysis of Hydroxyapatite-coated in Different Plasma Gas Atmosphere on Ti and Ti-6Al-4V", Eur. J. Dent., 2017, 11, 438-446. https://doi.org/10.4103/ejd.ejd_100_17