DOI QR코드

DOI QR Code

Development of Sleeve-integrated Knit Electrode for Surface EMG Monitoring

표면근전도 모니터링을 위한 슬리브 일체형 니트 전극 개발

  • Sora, Han (Material and Component Convergence R&D Department, Korea Institute of Industrial Technology) ;
  • Hyelim, Kim (Material and Component Convergence R&D Department, Korea Institute of Industrial Technology) ;
  • Daeyoung, Lim (Material and Component Convergence R&D Department, Korea Institute of Industrial Technology) ;
  • Wonyoung, Jeong (Material and Component Convergence R&D Department, Korea Institute of Industrial Technology)
  • 한소라 (한국생산기술연구원 소재부품융합연구부문) ;
  • 김혜림 (한국생산기술연구원 소재부품융합연구부문) ;
  • 임대영 (한국생산기술연구원 소재부품융합연구부문) ;
  • 정원영 (한국생산기술연구원 소재부품융합연구부문)
  • Received : 2022.12.06
  • Accepted : 2022.12.22
  • Published : 2022.12.31

Abstract

Wearable biosignal monitoring systems are being developed in various fields such as healthcare, fitness, and military industries. Due to its convenience, the leg sleeve-integrated with embedded sEMG electrodes can be worn unconsciously in daily life, enabling continuous measurement and collection of biological signals. In this study, the knitting structure, electrode diameter, the amount of conductive yarn required, the coefficient of friction, the electrical resistance, the skin-electrode impedance, and the signal to noise(SNR) were measured to optimize the knit based sEMG electrodes in the sleeve. The results indicated that plain stitch was confirmed to be an economically efficient knitting process because the production time is shorter and the amount of conductive yarn per unit area is smaller than other stitch structures. In addition, the biosignal collection performance of the knitted electrode was slightly lower than that of the conventional Ag-Ag/Cl disposable wet electrode, and an electrode with a plain stitch diameter of 20 mm showed the highest value of 0.31±0.02 mV in the state of muscle activation. It suggests that it is possible to develop knitted electrodes for biosignal monitoring system.

Keywords

Acknowledgement

본 연구는 한국생산기술연구원 기관주요사업 "미래 스마트웨어 제조를 위한 마이크로팩토리 기반기술개발(kitech EH-22-0003)"의 지원으로 수행함.

References

  1. N. Meziane, J. G. Webster, M. Attari, and A. J. Nimunkar, "Dry Electrodes for Electrocardiography", Physiol. Meas., 2013, 34, R47. https://doi.org/10.1088/0967-3334/34/9/R47
  2. R. Paradiso, L. Caldani, and M. Pacelli, "Knitted Electronic Textiles. In Wearable Sensors", Academic Press, 2014, pp.153-174.
  3. H. S. Kim, E. G. Kim, C. Y. Choi, and W. H. Yeo, "Advances in Soft and Dry Electrodes for Wearable Health Monitoring Devices", Micromachines, 2022, 13, 629. https://doi.org/10.3390/mi13040629
  4. S. Yao and Y. Zhu, "Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review", JOM, 2016, 68, 1145-1155. https://doi.org/10.1007/s11837-016-1818-0
  5. R. Paradiso, G. Loriga, and N. Taccini, "A Wearable Health Care System Based on Knitted Integrated Sensors", IEEE Transactions on Information Technology in Biomedicine, 2005, 9, 337-344. https://doi.org/10.1109/TITB.2005.854512
  6. V. Marozas, A. Petrenas, S. Daukantas, and A. Lukosevicius, "A Comparison of Conductive Textile-based and Silver/silver Chloride Gel Electrodes in Exercise Electrocardiogram Recordings", J. Electrocardiol., 2011, 44, 189-194. https://doi.org/10.1016/j.jelectrocard.2010.12.004
  7. S. A. Pullano, V. D. Kota, K. Kakaraparty, A. S. Fiorillo, and I. Mahbub, "Optically Unobtrusive Zeolite-Based Dry Electrodes for Wearable ECG Monitoring", IEEE Sensors Journal, 2022, 33, 10630-10639.
  8. S. Y. Kim, S. J. Lee, and W. Y. Jeong, "EMG Measurement with Textile-based Electrodes in Different Electrode Sizes and Clothing Pressures for Smart Clothing Design Optimization", Polymers, 2020, 12, 2406. https://doi.org/10.3390/polym12102406
  9. S. A. Lee, M. O. Kim, T. H. Kang, J. H. Park, and Y. J. Choi, "Knit Band Sensor for Myoelectric Control of Surface EMG-Based Prosthetic Hand", IEEE Sensors J., 2018, 18, 8578-8586. https://doi.org/10.1109/JSEN.2018.2865623
  10. D. Y. Cha, J. M. Jung, D. S. Kim, H. J. Yang, K. S. Choi, J. M. Choi, and S. P. Chang, "Study on Micro Dried Bio-potential Electrodes Using Conductive Epoxy on Textile Fabrics", J. Korean Inst. Electr. Electron. Mater. Eng., 2013, 26, 367-372.
  11. https://www.amann.com/products/product/silver-tech/ (Accessed October 7, 2022)
  12. D. O. Kim and E. A. Lee, "Classification of Subjective Sensation by Surface Fibers Measured by Image Analysis Technique", Sci, Emot. Sensib., 2003, 11a, 1381-1385.
  13. S. Kawabata, "The Standardization and Analysis of Hand Evaluation", The Textile Machinery Society of Japan, Osaka, Japan, 1980, pp.31-34.
  14. A. E. Hibbs, K. G. Thompson, D. N. French, D. Hodgson, and I. R. Spears, "Peak and Average Rectified EMG Measures: Which Method of Data Reduction Should be Used for Assessing Core Training Exercises?", J. Electromyogr. Kinesiol., 2011, 21, 102-111. https://doi.org/10.1016/j.jelekin.2010.06.001
  15. E. K. Roh and K. W. Oh, "Surface Properties of Artificial Suedes", Fashion & Textile Research Journal, 2013, 21, 309-315.
  16. H. Zhang, X. Tao, T. Yu, and S. Wang, "Conductive Knitted Fabric as Large-strain Gauge under High Temperature", Sensors and Actuators A: Physical, 2006, 126, 129-140. https://doi.org/10.1016/j.sna.2005.10.026