DOI QR코드

DOI QR Code

Facile Fabrication of Double-Network Nanocomposite Hydrogel Beads of Alginate/Polyacrylamide/Cellulose Nanocrystals with Enhanced Mechanical and Dye-Adsorption Performances

기계적 물성 및 염료 흡착 특성 강화를 위한 알지네이트, 폴리아크릴아미드, 셀룰로스 나노크리스탈로 구성된 이중망상 나노복합체 하이드로겔 비드의 제조

  • Ji Hun, Jeong (Department of Polymer Engineering, Pukyong National University) ;
  • Jin Kyung, Kim (Department of Polymer Engineering, Pukyong National University) ;
  • Yun Hyeong, Choi (Department of Polymer Engineering, Pukyong National University) ;
  • Bo Ram, Lee (Department of Physics, Pukyong National University) ;
  • Yong Hyun, Kim (Department of Display & Semiconductor Engineering, Pukyong National University) ;
  • Youngho, Eom (Department of Polymer Engineering, Pukyong National University)
  • 정지훈 (부경대학교 고분자공학과) ;
  • 김진경 (부경대학교 고분자공학과) ;
  • 최윤형 (부경대학교 고분자공학과) ;
  • 이보람 (부경대학교 물리학과) ;
  • 김용현 (부경대학교 디스플레이반도체공학전공) ;
  • 엄영호 (부경대학교 고분자공학과)
  • Received : 2022.11.29
  • Accepted : 2022.12.14
  • Published : 2022.12.31

Abstract

Herein, double-network (DN) hydrogel beads of calcium alginate/polyacrylamide (PAAm) were synthesized, and their dye adsorption and mechanical performances were enhanced by incorporating cellulose nanocrystal (CNC). The DN hydrogel beads were prepared via two-step procedures: free-radical polymerization of AAm in oil bath at 90 ℃ and ionotropic crosslinking of alginate in calcium chloride solution. The nanocomposite DN beads were fabricated at the CNC contents of 0.5-2 wt% with respect to the polymer amount. Whereas CNC had insignificant effect on the bead structure, it significantly improved both mechanical properties and dye adsorption capacity. Neat and nanocomposite beads exhibited the diameter, weight, and water content of approximately 3.3 mm, 0.04 g, and 88%, respectively, irrespective of the CNC amount. In the dye adsorption, whereas neat hydrogel beads exhibited 19.7% dye removal for the immersion time of 180 min, nanocomposite beads with 1.5 wt% CNC exhibited a 1.8-fold increased dye removal efficiency (35.3%). In addition, nanocomposite beads with 1.0 wt% CNC exhibited 1.8- and 3.8-fold increased compressive modulus and strength (9.0 and 3.0 MPa) compared with those of neat beads (4.9 and 0.8 MPa). Consequently, the DN hydrogel beads with the highest performances were obtained at the CNC content of 1.0-1.5 wt%.

Keywords

Acknowledgement

이 논문은 2022년 부경대학교 국립대학육성사업 지원비에 의하여 연구되었음.

References

  1. L. Liu, Y. Wan, Y. Xie, R. Zhai, B. Zhang, and J. Liu, "The Removal of Dye from Aqueous Solution Using Alginate-halloysite Nanotube Beads", Chem. Eng. J., 2012, 187, 210-216. https://doi.org/10.1016/j.cej.2012.01.136
  2. N. Mohammed, N. Grishkewich, R. M. Berry, and K. C. Tam, "Cellulose Nanocrystal-alginate Hydrogel Beads as Novel Adsorbents for Organic Dyes in Aqueous Solutions", Cellulose, 2015, 22, 3725-3738. https://doi.org/10.1007/s10570-015-0747-3
  3. P.-B. Zhang, A.-Q. Tang, Z.-H. Wang, J.-Y. Lu, B.-K. Zhu, and L.-P. Zhu, "Tough Poly(L-DOPA)-containing Double Network Hydrogel Beads with High Capacity of Dye Adsorption", Chin. J. Polym. Sci., 2018, 36, 1251-1261. https://doi.org/10.1007/s10118-018-2163-2
  4. C. Liu, H. Liu, T. Xiong, A. Xu, B. Pan, and K. Tang, "Graphene Oxide Reinforced Alginate/PVA Double Network Hydrogels for Efficient Dye Removal", Polymer, 2018, 10, 835. https://doi.org/10.3390/polym10080835
  5. L. M. Pandey, "Enhanced Adsorption Capacity of Designed Bentonite and Alginate Beads for the Effective Removal of Methylene Blue", Appl. Clay Sci., 2019, 169, 102-111. https://doi.org/10.1016/j.clay.2018.12.019
  6. A. F. Hassan, A. M. Abdel-Mohsen, and M. M. G. Fouda, "Comparative Study of Calcium Alginate, Activated Carbon, and Their Composite Beads on Methylene Blue Adsorption", Carbohydr. Polym., 2014, 102, 192-198. https://doi.org/10.1016/j.carbpol.2013.10.104
  7. L. Li, J. Zhao, Y. Sun, F. Yu, and J. Ma, "Ionically Cross-linked Sodium Alginate/κ-carrageenan Double-network Gel Beads with Low-swelling, Enhanced Mechanical Properties, and Excellent Adsorption Performance", Chem. Eng. J., 2019, 372, 1091-1103. https://doi.org/10.1016/j.cej.2019.05.007
  8. J. P. Gong, "Why are Double Network Hydrogels so Tough?", Soft Matter, 2010, 6, 2583-2590. https://doi.org/10.1039/b924290b
  9. H. J. Kim, J. H. Jeong, Y. H. Choi, and Y. Eom, "Review on Cellulose Nanocrystal-reinforced Polymer Nanocomposites: Processing, Properties, and Rheology", Korea Aust. Rheol. J., 2021, 33, 165-185. https://doi.org/10.1007/s13367-021-0015-z
  10. H. J. Kim, Y. H. Choi, J. H. Jeong, H. Kim, H. S. Yang, S. Y. Hwang, J. M. Koo, and Y. Eom, "Rheological Percolation of Cellulose Nanocrystals in Biodegradable Poly(butylene succinate) Nanocomposites: A Novel Approach for Tailoring the Mechanical and Hydrolytic Properties", Macromol. Res., 2021, 29, 720-726. https://doi.org/10.1007/s13233-021-9080-x
  11. S.-A. Park, Y. Eom, H. Jeon, J. M. Koo, E. S. Lee, J. Jegal, S. Y. Hwang, D. X. Oh, and J. Park, "Preparation of Synergistically Reinforced Transparent Bio-polycarbonate Nanocomposites with Highly Dispersed Cellulose Nanocrystals", Green Chem., 2019, 21, 5212-5221. https://doi.org/10.1039/c9gc02253h
  12. L. T. Hao, Y. Eom, T. H. Tran, J. M. Koo, J. Jegal, S. Y. Hwang, D. X. Oh, and J. Park, "Rediscovery of Nylon Upgraded By Interactive Biorenewable Nano-fillers", Nanoscale, 2020, 12, 2393-2405. https://doi.org/10.1039/c9nr08091k
  13. N. Mohammed, N. Grishkewich, R. M. Berry, and K. C. Tam, "Cellulose Nanocrystal-alginate Hydrogel Beads as Novel Adsorbents for Organic Dyes in Aqueous Solutions", Cellulose, 2015, 22, 3725-3738. https://doi.org/10.1007/s10570-015-0747-3
  14. J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, "Double-network Hydrogels with Extremely High Mechanical Strength", Adv. Mater., 2003, 15, 1155-1158. https://doi.org/10.1002/adma.200304907