DOI QR코드

DOI QR Code

Rheological Behaviors of CNC/ChNF Suspension and Physical Properties of Anisotropic Film

셀룰로스 나노결정/키틴 나노섬유 혼합 분산액의 유변학적 거동 및 이방성 필름의 물리적 특성

  • Minhyung, Kim (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Da Rae, Lee (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Hyungsup, Kim (Department of Organic and Nano System Engineering, Konkuk University)
  • 김민형 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 이다래 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 김형섭 (건국대학교 공과대학 유기나노시스템공학과)
  • Received : 2022.11.24
  • Accepted : 2022.12.14
  • Published : 2022.12.31

Abstract

In this study, the effect of chitin nanofiber (ChNF) on the physical behaviors of cellulose nanocrystal (CNC) in suspension and solid states was investigated using polarized optical microscopy, rotational rheometry, and wide-angle X-ray scattering system. ChNF showed a significant effect on the cholesteric phase of CNC suspension, mainly owing to the electrostatic attraction and hydrogen bonding between ChNF and CNC. In turn, the increase of ChNF content reduced the size of the cholesteric domain. The applied shear force on the suspension changed the cholesteric phase to a nematic structure that was maintained after the solidification. This improved the mechanical strength of the resulted film along the shear direction.

Keywords

Acknowledgement

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원('20017504')과 2020년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2020년 산업혁신인재성장지원사업).

References

  1. Y. Kim, Y. Song, and H. Kim, "Preparation of Transparent Cellulose Film with Controlled Haze Using Halloysite Nanotubes", Cellulose, 2018, 25, 1239-1248. https://doi.org/10.1007/s10570-017-1625-y
  2. T. Kim, Y. Song, J. Ahn, M. Kim, E. Ko, and H. Kim, "Rheological Interpretation of Intermediate Physical State of Gel and Liquid Crystalline Phases in Cellulose Solution and Their Synergetic Effects on the Mechanical Property", Cellulose, 2021, 28, 10863-10874. https://doi.org/10.1007/s10570-021-04209-7
  3. J. Hur, S. Park, J. H. Kim, J.Y. Cho, B. Kwon, J. H. Lee, and W. H. Lee, "Ultrasensitive, Transparent, Flexible, and Ecofriendly NO2 Gas Sensors Enabled by Oxidized Single-Walled Carbon Nanotube Bundles on Cellulose with Engineered Surface Roughness", ACS Sustain. Chem. Eng., 2022, 10, 3227-3235. https://doi.org/10.1021/acssuschemeng.1c07559
  4. S. Park, J. Ahn, J. H. Kim, J. T. Han, W. H. Lee, and H. Kim, "TEMPO-oxidized Cellulose Nanofiber as p-dopant Substrate for Oxidized-SWCNT Based NO2 Sensor with High Performance", Cellulose, 2022. doi: 10.1007/s10570-022-04944-5.
  5. S. Pak, J. Ahn, and H. Kim, "High Performance and Sustainable CNF Membrane via Facile In-situ Envelopment of Hydrochar for Water Treatment", Carbohydr. Polym., 2022, 296, 119948.
  6. J. Ahn, S. Pak, Y. Song, and H. Kim, "In-situ Synthesis of Carbon Dot at Cellulose Nanofiber for Durable Water Treatment Membrane with High Selectivity", Carbohydr. Polym., 2021, 255, 117387.
  7. S. Park, H. Kim, T. Kim, S. Pak, M. Kim, and J. Ahn, "Effect of Different Morphology of Nucleating Agents on the Crystallization Behavior of Poly Lactic Acid/Nanocellulose Composites", Text. Sci. Eng., 2021, 58, 322-327.
  8. Q. Y. Cheng, C. S. Guan, M. Wang, Y. D. Li, and J. B. Zeng, "Cellulose Nanocrystal Coated Cotton Fabric with Superhydrophobicity for Efficient Oil/water Separation", Carbohydr. Polym., 2018, 199, 390-396. https://doi.org/10.1016/j.carbpol.2018.07.046
  9. Z. Yu, K. Wang, and X. Lu, "Flexible Cellulose Nanocrystal-based Bionanocomposite Film as a Smart Photonic Material Responsive to Humidity", Int. J. Biol. Macromol., 2021, 188, 385-390. https://doi.org/10.1016/j.ijbiomac.2021.08.049
  10. X. Zhang, R. Xiong, S. Kang, Y. Yang, and V. V. Tsukruk, "Alternating Stacking of Nanocrystals and Nanofibers into Ultrastrong Chiral Biocomposite Laminates", ACS Nano, 2020, 14, 14675-14685. https://doi.org/10.1021/acsnano.0c06192
  11. L. M. Amirabad, M. Jonoobi, N. S. Mousavi, K. Oksman, A. Kaboorani, and H. Yousefi, "Improved Antifungal Activity and Stability of Chitosan Nanofibers Using Cellulose Nanocrystal on Banknote Papers", Carbohydr. Polym., 2018, 189, 229-237. https://doi.org/10.1016/j.carbpol.2018.02.041
  12. B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, and J. W. Gilman, "Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films", Adv. Funct. Mater., 2018, 28, 1800032.
  13. M. Kim, S. Kim, N. Han, S. Lee, and H. Kim, "Understanding Viscoelastic Behavior of Hybrid Nanocellulose Film Based on Rheological and Electrostatic Observation in Blended Suspension", Carbohydr. Polym., 2023, 300, 120218.
  14. Y. Hua, T. Chen, and Y. Tang, "Preparation and Characterization of Nanocomposite Films Based on Different Ratios of Cellulose Nanocrystal and Cellulose Nanofiber", Ind Crops Prod, 2022, 179, 114686.
  15. G. Kwon, K. Lee, D. Kim, Y. Jeon, U. J. Kim, and J. You, "Cellulose Nanocrystal-coated TEMPO-oxidized Cellulose Nanofiber Films for High Performance All-cellulose Nanocomposites", J. Hazard. Mater., 2020, 398, 123100.
  16. C. C. Satam, C. W. Irvin, C. J. Coffey, R. K. Geran, R. Ibarra-Rivera, M. L. Shofner, and J. C. Meredith, "Controlling Barrier and Mechanical Properties of Cellulose Nanocrystals by Blending with Chitin Nanofibers", Biomacromolecules, 2019, 21, 545-555. https://doi.org/10.1021/acs.biomac.9b01268
  17. C. C. Satam, C. W. Irvin, A. W. Lang, J. C. R. Jallorina, M. L. Shofner, J. R. Reynolds, and J. C. Meredith, "Spray-coated Multilayer Cellulose Nanocrystal-chitin Nanofiber Films for Barrier Applications", ACS Sustain. Chem. Eng., 2018, 6, 10637-10644. https://doi.org/10.1021/acssuschemeng.8b01536
  18. J. M. Buffa, U. Casado, V. Mucci, and M. I. Aranguren, "Cellulose Nanocrystals in Aqueous Suspensions: Rheology of Lyotropic Chiral Liquid Crystals", Cellulose, 2019, 26, 2317-2332. https://doi.org/10.1007/s10570-019-02278-3
  19. M. C. Li, Q. Wu, R. J. Moon, M. A. Hubbe, and M. J. Bortner, "Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications", Adv. Mater., 2021, 33, 2006052.
  20. H. Y. Song, S. Y. Park, M. C. Kim, J. D. Park, H. J. Youn, and K. Hyun, "A Comparative Study of the Nonlinear Rheological Properties of Three Different Cellulose Nanofibril Suspensions", Phys. Fluids, 2022, 34, 053108.
  21. M. Kim, T. Kim, and H. Kim, "Rheological Analysis of Physical States of Cellulose Nanocrystal Suspension and Synergetic Effect of Aligned Gel State", Carbohydr. Polym., 2022, 284, 119170.
  22. J. Liao, K. A. Pham, and V. Breedveld, "Rheological Characterization and Modeling of Cellulose Nanocrystal and TEMPO-oxidized Cellulose Nanofibril Suspensions", Cellulose, 2020, 27, 3741-3757. https://doi.org/10.1007/s10570-020-03048-2
  23. H. Koerner, Y. Luo, X. Li, C. Cohen, R. C. Hedden, and C. K. Ober, "Structural Studies of Extension-induced Mesophase Formation in Poly(diethylsiloxane) Elastomers: In Situ Synchrotron WAXS and SAXS", Macromolecules, 2003, 36, 1975-1981. https://doi.org/10.1021/ma020856j
  24. G. Siqueira, D. Kokkinis, R. Libanori, M. K. Hausmann, A. S. Gladman, A. Neels, and A. R. Studart, "Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures", Adv. Funct. Mater., 2017, 27, 1604619.