DOI QR코드

DOI QR Code

Sulfur Dye/Graphite Composite Preparation for Anode of Lithium-ion Batteries

황화 염료 기반 흑연 복합체 제조 및 리튬이온 배터리용 음극 활물질 응용

  • Dae Geon, Song (School of Chemical Engineering, Pusan National University) ;
  • Seongwook, Chae (School of Chemical Engineering, Pusan National University) ;
  • Taewoong, Lee (School of Chemical Engineering, Pusan National University) ;
  • Seung Geol, Lee (School of Chemical Engineering, Pusan National University)
  • 송대건 (부산대학교 응용화학공학부) ;
  • 채성욱 (부산대학교 응용화학공학부) ;
  • 이태웅 (부산대학교 응용화학공학부) ;
  • 이승걸 (부산대학교 응용화학공학부)
  • Received : 2022.11.01
  • Accepted : 2022.12.13
  • Published : 2022.12.31

Abstract

This study fabricated a sulfur blue dye/graphite composite (SBLG) as an anode to enhance the electrochemical performance of lithium-ion batteries. Nitrogen and sulfur atoms from a sulfur dye were doped into a carbon microstructure via facile high-energy ball milling. The anode materials with a 5:5 (SBLG50) sulfur dye/graphite composite ratio generated a specific capacity of 801.2 mAh g-1 after 100 cycles with Coulombic efficiency of over 99%. The enhanced electrochemical performance of SBLG50 was attributed to the N and S-doped carbon microstructure that provided additional active sites for lithium-ion storage.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단(기본 연구)의 지원을 받아 작성되었음(2020R1F1A1071605).

References

  1. J. Hyun, G. Doo, S. Yuk, D. H. Lee, D. W. Lee, S. Choi, J. Kwen, H. Kang, R. Tenne, S. G. Lee, and H. T. Kim, "Magnetic FieldInduced Through-Plane Alignment of the Proton Highway in a Proton Exchange Membrane", ACS Appl. Energy Mater., 2020, 3, 4619-4628. https://doi.org/10.1021/acsaem.0c00289
  2. H. Kang and S. G. Lee, "Recent Research Trend in Electrodes of Lithium Ion Battery Based on Computational Materials Science Approaches", KIC News, 2020, 23, 42-54.
  3. N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion Battery Materials: Present and Future", Mater. Today, 2015, 18, 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
  4. A. Kusoglu and A. Z. Weber, "New Insights into Perfluorinated Sulfonic-acid Ionomers", Chem. Rev., 2017, 117, 987-1104. https://doi.org/10.1021/acs.chemrev.6b00159
  5. N. Kannan and D. Vakeesan, "Solar Energy for Future World:- a Review", Renew. Sustain. Energy Rev., 2016, 62, 1092-1105. https://doi.org/10.1016/j.rser.2016.05.022
  6. Y. G. Guo, J. S. Hu, and L. J. Wan, "Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices", Adv. Mater., 2008, 20, 2878-2887. https://doi.org/10.1002/adma.200800627
  7. H. Li, Z. Wang, L. Chen, and X. Huang, "Research on Advanced Materials for Li-ion Batteries", Adv. Mater., 2009, 21, 4593-4607. https://doi.org/10.1002/adma.200901710
  8. D. Di Lecce, R. Verrelli, and J. Hassoun, "Lithium-ion Batteries for Sustainable Energy Storage: Recent Advances Towards New Cell Configurations", Green Chem., 2017, 19, 3442-3467. https://doi.org/10.1039/c7gc01328k
  9. Y. Nishi, "Lithium Ion Secondary Batteries; past 10 Years and the Future", J. Power Sources, 2001, 100, 101-106. https://doi.org/10.1016/S0378-7753(01)00887-4
  10. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, "Graphene, Related Twodimensional Crystals, and Hybrid Systems for Energy Conversion and Storage", Science, 2015, 347, 1246501.
  11. D. Bar-Tow, E. Peled, and L. Burstein, "A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-ion Batteries", J. Electrochem. Soc., 1999, 146, 824.
  12. H. Buqa, D. Goers, M. Holzapfel, M. E. Spahr, and P. Novak, "High Rate Capability of Graphite Negative Electrodes for Lithium-ion Batteries", J. Electrochem. Soc., 2005, 152, A474.
  13. K. S. Novoselov, L. Colombo, P. Gellert, M. Schwab, and K. Kim, "A Roadmap for Graphene", Nature, 2012, 490, 192-200. https://doi.org/10.1038/nature11458
  14. A. Gohier, B. Laik, K. H. Kim, J. L. Maurice, J. P. Pereira-Ramos, C. S. Cojocaru, and P. T. Van, "High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries", Adv. Mater., 2012, 24, 2592-2597. https://doi.org/10.1002/adma.201104923
  15. W.-J. Zhang, "A Review of the Electrochemical Performance of Alloy Anodes for Lithium-ion Batteries", J. Power Sources, 2011, 196, 13-24. https://doi.org/10.1016/j.jpowsour.2010.07.020
  16. Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M. R. Zachariah, and C. Wang, "Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries", Nano Lett., 2013, 13, 470-474. https://doi.org/10.1021/nl303823k
  17. J. Luo, X. Zhao, J. Wu, H. D. Jang, H. H. Kung, and J. Huang, "Crumpled Graphene-encapsulated Si Nanoparticles for Lithium Ion Battery Anodes", J. Phys. Chem. Lett., 2012, 3, 1824-1829. https://doi.org/10.1021/jz3006892
  18. J. Shi, Y. Wang, Q. Su, F. Cheng, X. Kong, J. Lin, T. Zhu, S. Liang, and A. Pan, "NS co-doped C@SnS Nanoflakes/graphene Composite as Advanced Anode for Sodium-ion Batteries", Chem. Eng. J., 2018, 353, 606-614. https://doi.org/10.1016/j.cej.2018.07.157
  19. M. Du, J. Sun, J. Chang, F. Yang, L. Shi, and L. Gao, "Synthesis of Nitrogen-doped Reduced Graphene Oxide Directly from Nitrogen-doped Graphene Oxide as a High-performance Lithium Ion Battery Anode", RSC Adv., 2014, 4, 42412-42417. https://doi.org/10.1039/C4RA05544F
  20. T. Lee, W. Kwon, H. Kang, S. Chae, E. Kim, J. Kim, H. G. Chae, A. S. Lee, E. Jeong, and J. H. Lee, "Pyro-polymerization of Organic Pigments for Superior Lithium Storage", Carbon, 2022, 188, 187-196. https://doi.org/10.1016/j.carbon.2021.11.036
  21. Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, and Y. Lei, "Highly Nitrogen Doped Carbon Nanofibers with Superior Rate Capability and Cyclability for Potassium Ion Batteries", Nat. Commun., 2018, 9, 1-11. https://doi.org/10.1038/s41467-017-02088-w
  22. W. Chen, M. Wan, Q. Liu, X. Xiong, F. Yu, and Y. Huang, "Heteroatom-doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium-ion Batteries", Small Methods, 2019, 3, 1800323.
  23. P. Li, J.-Y. Hwang, S.-M. Park, and Y.-K. Sun, "Superior Lithium/potassium Storage Capability of Nitrogen-rich Porous Carbon Nanosheets Derived from Petroleum Coke", J. Mater. Chem. A, 2018, 6, 12551-12558. https://doi.org/10.1039/C8TA03340D
  24. Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu, M. Xia, R. Zheng, M. Shui, and J. Shu, "Heteroatom-doped Carbon-based Materials for Lithium and Sodium Ion Batteries", Energy Storage Mater., 2020, 32, 65-90.
  25. H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, and G. Cui, "Nitrogen-doped Graphene Nanosheets with Excellent Lithium Storage Properties", J. Mater. Chem., 2011, 21, 5430-5434. https://doi.org/10.1039/c1jm00049g
  26. Z. Qiu, Y. Lin, H. Xin, P. Han, D. Li, B. Yang, P. Li, S. Ullah, H. Fan, and C. Zhu, "Ultrahigh Level Nitrogen/sulfur Co-doped Carbon as High Performance Anode Materials for Lithiumion Batteries", Carbon, 2018, 126, 85-92. https://doi.org/10.1016/j.carbon.2017.09.100
  27. X. Jiao, Y. Liu, T. Li, C. Zhang, X. Xu, O. O. Kapitanova, C. He, B. Li, S. Xiong, and J. Song, "Crumpled Nitrogen-doped Graphene-wrapped Phosphorus Composite as a Promising Anode for Lithium-ion Batteries", ACS Appl. Mater. Interfaces, 2019, 11, 30858-30864. https://doi.org/10.1021/acsami.9b08915
  28. G. Deokar, J. Jin, U. Schwingenschlogl, and P. M. Costa, "Chemical Vapor Deposition-grown Nitrogen-doped Graphene's Synthesis, Characterization and Applications", NPJ 2D Mater. Appl., 2022, 6, 1-17. https://doi.org/10.1038/s41699-021-00282-5
  29. A. Zabet-Khosousi, L. Zhao, L. Palova, M. S. Hybertsen, D. R. Reichman, A. N. Pasupathy, and G. W. Flynn, "Segregation of Sublattice Domains in Nitrogen-doped Graphene", J. Am. Chem. Soc., 2014, 136, 1391-1397. https://doi.org/10.1021/ja408463g
  30. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, "The Role of Graphene for Electrochemical Energy Storage", Nat. Mater., 2015, 14, 271-279. https://doi.org/10.1038/nmat4170
  31. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, "Graphene/metal Oxide Composite Electrode Materials for Energy Storage", Nano Energy, 2012, 1, 107-131. https://doi.org/10.1016/j.nanoen.2011.11.001
  32. H. Wang, T. Maiyalagan, and X. Wang, "Review on Recent Progress in Nitrogen-doped Graphene: Synthesis, Characterization, and Its Potential Applications", ACS Catal., 2012, 2, 781-794. https://doi.org/10.1021/cs200652y
  33. I.-Y. Jeon, Y.-R. Shin, G.-J. Sohn, H.-J. Choi, S.-Y. Bae, J. Mahmood, S.-M. Jung, J.-M. Seo, M.-J. Kim, D. W. Chang, L. Dai, and J.-B. Baek, "Edge-carboxylated Graphene Nanosheets Via Ball Milling", Proc. Natl. Acad. Sci. USA, 2012, 109, 5588- 5593. https://doi.org/10.1073/pnas.1116897109
  34. I.-Y. Jeon, H.-J. Choi, M. J. Ju, I. T. Choi, K. Lim, J. Ko, H. K. Kim, J. C. Kim, J.-J. Lee, and D. Shin, "Direct Nitrogen Fixation at the Edges Of Graphene Nanoplatelets as Efficient Electrocatalysts for Energy Conversion", Sci. Rep., 2013, 3, 1-7.
  35. I. Y. Jeon, M. J. Ju, J. Xu, H. J. Choi, J. M. Seo, M. J. Kim, I. T. Choi, H. M. Kim, J. C. Kim, and J. J. Lee, "Edge-fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-sensitized Solar Cells and Lithium Ion Batteries", Adv. Funct. Mater., 2015, 25, 1170-1179. https://doi.org/10.1002/adfm.201403836
  36. L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, and Y. Huang, "Sulfur-doped Carbon with Enlarged Interlayer Distance as a High-performance Anode Material for Sodium-ion Batteries", Adv. Sci., 2015, 2, 1500195.
  37. Z. Hong, Y. Zhen, Y. Ruan, M. Kang, K. Zhou, J. M. Zhang, Z. Huang, and M. Wei, "Rational Design and General Synthesis of S-doped Hard Carbon with Tunable Doping Sites Toward Excellent Na-ion Storage Performance", Adv. Mater., 2018, 30, 1802035.
  38. W. Ai, L. Xie, Z. Du, Z. Zeng, J. Liu, H. Zhang, Y. Huang, W. Huang, and T. Yu, "A Novel Graphene-polysulfide Anode Material for High-performance Lithium-ion Batteries", Sci. Rep., 2013, 3, 1-5.
  39. W. Chen and L. Yan, "Preparation of Graphene by a Lowtemperature Thermal Reduction at Atmosphere Pressure", Nanoscale, 2010, 2, 559-563. https://doi.org/10.1039/b9nr00191c
  40. L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao, W. Song, J. Shi, M. Huang, and D. Mitlin, "Sulfur-nitrogen Rich Carbon as Stable High Capacity Potassium Ion Battery Anode: Performance and Storage Mechanisms", Energy Storage Mater., 2020, 27, 212-225. https://doi.org/10.1016/j.ensm.2020.02.004
  41. C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, "Nitrogen-doped Graphene by All-solid-state Ball-milling Graphite with Urea as a High-power Lithium Ion Battery Anode", J. Power Sources, 2017, 342, 157-164. https://doi.org/10.1016/j.jpowsour.2016.11.110
  42. Y. Yan, Y.-X. Yin, S. Xin, Y.-G. Guo, and L.-J. Wan, "Ionothermal Synthesis of Sulfur-doped Porous Carbons Hybridized with Graphene as Superior Anode Materials for Lithium-ion Batteries", Chem. Commun., 2012, 48, 10663-10665. https://doi.org/10.1039/c2cc36234a
  43. W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, and K. Jiang, "A High Performance Sulfur-doped Disordered Carbon Anode for Sodium Ion Batteries", Energy Environ. Sci., 2015, 8, 2916-2921. https://doi.org/10.1039/C5EE01985K
  44. S.-M. Hong, V. Etacheri, C. N. Hong, S. W. Choi, K. B. Lee, and V. G. Pol, "Enhanced Lithium-and Sodium-ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine", ACS Appl. Mater. Interfaces, 2017, 9, 18790-18798. https://doi.org/10.1021/acsami.7b03456