Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단(기본 연구)의 지원을 받아 작성되었음(2020R1F1A1071605).
References
- J. Hyun, G. Doo, S. Yuk, D. H. Lee, D. W. Lee, S. Choi, J. Kwen, H. Kang, R. Tenne, S. G. Lee, and H. T. Kim, "Magnetic FieldInduced Through-Plane Alignment of the Proton Highway in a Proton Exchange Membrane", ACS Appl. Energy Mater., 2020, 3, 4619-4628. https://doi.org/10.1021/acsaem.0c00289
- H. Kang and S. G. Lee, "Recent Research Trend in Electrodes of Lithium Ion Battery Based on Computational Materials Science Approaches", KIC News, 2020, 23, 42-54.
- N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion Battery Materials: Present and Future", Mater. Today, 2015, 18, 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
- A. Kusoglu and A. Z. Weber, "New Insights into Perfluorinated Sulfonic-acid Ionomers", Chem. Rev., 2017, 117, 987-1104. https://doi.org/10.1021/acs.chemrev.6b00159
- N. Kannan and D. Vakeesan, "Solar Energy for Future World:- a Review", Renew. Sustain. Energy Rev., 2016, 62, 1092-1105. https://doi.org/10.1016/j.rser.2016.05.022
- Y. G. Guo, J. S. Hu, and L. J. Wan, "Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices", Adv. Mater., 2008, 20, 2878-2887. https://doi.org/10.1002/adma.200800627
- H. Li, Z. Wang, L. Chen, and X. Huang, "Research on Advanced Materials for Li-ion Batteries", Adv. Mater., 2009, 21, 4593-4607. https://doi.org/10.1002/adma.200901710
- D. Di Lecce, R. Verrelli, and J. Hassoun, "Lithium-ion Batteries for Sustainable Energy Storage: Recent Advances Towards New Cell Configurations", Green Chem., 2017, 19, 3442-3467. https://doi.org/10.1039/c7gc01328k
- Y. Nishi, "Lithium Ion Secondary Batteries; past 10 Years and the Future", J. Power Sources, 2001, 100, 101-106. https://doi.org/10.1016/S0378-7753(01)00887-4
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, "Graphene, Related Twodimensional Crystals, and Hybrid Systems for Energy Conversion and Storage", Science, 2015, 347, 1246501.
- D. Bar-Tow, E. Peled, and L. Burstein, "A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-ion Batteries", J. Electrochem. Soc., 1999, 146, 824.
- H. Buqa, D. Goers, M. Holzapfel, M. E. Spahr, and P. Novak, "High Rate Capability of Graphite Negative Electrodes for Lithium-ion Batteries", J. Electrochem. Soc., 2005, 152, A474.
- K. S. Novoselov, L. Colombo, P. Gellert, M. Schwab, and K. Kim, "A Roadmap for Graphene", Nature, 2012, 490, 192-200. https://doi.org/10.1038/nature11458
- A. Gohier, B. Laik, K. H. Kim, J. L. Maurice, J. P. Pereira-Ramos, C. S. Cojocaru, and P. T. Van, "High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries", Adv. Mater., 2012, 24, 2592-2597. https://doi.org/10.1002/adma.201104923
- W.-J. Zhang, "A Review of the Electrochemical Performance of Alloy Anodes for Lithium-ion Batteries", J. Power Sources, 2011, 196, 13-24. https://doi.org/10.1016/j.jpowsour.2010.07.020
- Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M. R. Zachariah, and C. Wang, "Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries", Nano Lett., 2013, 13, 470-474. https://doi.org/10.1021/nl303823k
- J. Luo, X. Zhao, J. Wu, H. D. Jang, H. H. Kung, and J. Huang, "Crumpled Graphene-encapsulated Si Nanoparticles for Lithium Ion Battery Anodes", J. Phys. Chem. Lett., 2012, 3, 1824-1829. https://doi.org/10.1021/jz3006892
- J. Shi, Y. Wang, Q. Su, F. Cheng, X. Kong, J. Lin, T. Zhu, S. Liang, and A. Pan, "NS co-doped C@SnS Nanoflakes/graphene Composite as Advanced Anode for Sodium-ion Batteries", Chem. Eng. J., 2018, 353, 606-614. https://doi.org/10.1016/j.cej.2018.07.157
- M. Du, J. Sun, J. Chang, F. Yang, L. Shi, and L. Gao, "Synthesis of Nitrogen-doped Reduced Graphene Oxide Directly from Nitrogen-doped Graphene Oxide as a High-performance Lithium Ion Battery Anode", RSC Adv., 2014, 4, 42412-42417. https://doi.org/10.1039/C4RA05544F
- T. Lee, W. Kwon, H. Kang, S. Chae, E. Kim, J. Kim, H. G. Chae, A. S. Lee, E. Jeong, and J. H. Lee, "Pyro-polymerization of Organic Pigments for Superior Lithium Storage", Carbon, 2022, 188, 187-196. https://doi.org/10.1016/j.carbon.2021.11.036
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, and Y. Lei, "Highly Nitrogen Doped Carbon Nanofibers with Superior Rate Capability and Cyclability for Potassium Ion Batteries", Nat. Commun., 2018, 9, 1-11. https://doi.org/10.1038/s41467-017-02088-w
- W. Chen, M. Wan, Q. Liu, X. Xiong, F. Yu, and Y. Huang, "Heteroatom-doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium-ion Batteries", Small Methods, 2019, 3, 1800323.
- P. Li, J.-Y. Hwang, S.-M. Park, and Y.-K. Sun, "Superior Lithium/potassium Storage Capability of Nitrogen-rich Porous Carbon Nanosheets Derived from Petroleum Coke", J. Mater. Chem. A, 2018, 6, 12551-12558. https://doi.org/10.1039/C8TA03340D
- Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu, M. Xia, R. Zheng, M. Shui, and J. Shu, "Heteroatom-doped Carbon-based Materials for Lithium and Sodium Ion Batteries", Energy Storage Mater., 2020, 32, 65-90.
- H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, and G. Cui, "Nitrogen-doped Graphene Nanosheets with Excellent Lithium Storage Properties", J. Mater. Chem., 2011, 21, 5430-5434. https://doi.org/10.1039/c1jm00049g
- Z. Qiu, Y. Lin, H. Xin, P. Han, D. Li, B. Yang, P. Li, S. Ullah, H. Fan, and C. Zhu, "Ultrahigh Level Nitrogen/sulfur Co-doped Carbon as High Performance Anode Materials for Lithiumion Batteries", Carbon, 2018, 126, 85-92. https://doi.org/10.1016/j.carbon.2017.09.100
- X. Jiao, Y. Liu, T. Li, C. Zhang, X. Xu, O. O. Kapitanova, C. He, B. Li, S. Xiong, and J. Song, "Crumpled Nitrogen-doped Graphene-wrapped Phosphorus Composite as a Promising Anode for Lithium-ion Batteries", ACS Appl. Mater. Interfaces, 2019, 11, 30858-30864. https://doi.org/10.1021/acsami.9b08915
- G. Deokar, J. Jin, U. Schwingenschlogl, and P. M. Costa, "Chemical Vapor Deposition-grown Nitrogen-doped Graphene's Synthesis, Characterization and Applications", NPJ 2D Mater. Appl., 2022, 6, 1-17. https://doi.org/10.1038/s41699-021-00282-5
- A. Zabet-Khosousi, L. Zhao, L. Palova, M. S. Hybertsen, D. R. Reichman, A. N. Pasupathy, and G. W. Flynn, "Segregation of Sublattice Domains in Nitrogen-doped Graphene", J. Am. Chem. Soc., 2014, 136, 1391-1397. https://doi.org/10.1021/ja408463g
- R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, "The Role of Graphene for Electrochemical Energy Storage", Nat. Mater., 2015, 14, 271-279. https://doi.org/10.1038/nmat4170
- Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, "Graphene/metal Oxide Composite Electrode Materials for Energy Storage", Nano Energy, 2012, 1, 107-131. https://doi.org/10.1016/j.nanoen.2011.11.001
- H. Wang, T. Maiyalagan, and X. Wang, "Review on Recent Progress in Nitrogen-doped Graphene: Synthesis, Characterization, and Its Potential Applications", ACS Catal., 2012, 2, 781-794. https://doi.org/10.1021/cs200652y
- I.-Y. Jeon, Y.-R. Shin, G.-J. Sohn, H.-J. Choi, S.-Y. Bae, J. Mahmood, S.-M. Jung, J.-M. Seo, M.-J. Kim, D. W. Chang, L. Dai, and J.-B. Baek, "Edge-carboxylated Graphene Nanosheets Via Ball Milling", Proc. Natl. Acad. Sci. USA, 2012, 109, 5588- 5593. https://doi.org/10.1073/pnas.1116897109
- I.-Y. Jeon, H.-J. Choi, M. J. Ju, I. T. Choi, K. Lim, J. Ko, H. K. Kim, J. C. Kim, J.-J. Lee, and D. Shin, "Direct Nitrogen Fixation at the Edges Of Graphene Nanoplatelets as Efficient Electrocatalysts for Energy Conversion", Sci. Rep., 2013, 3, 1-7.
- I. Y. Jeon, M. J. Ju, J. Xu, H. J. Choi, J. M. Seo, M. J. Kim, I. T. Choi, H. M. Kim, J. C. Kim, and J. J. Lee, "Edge-fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-sensitized Solar Cells and Lithium Ion Batteries", Adv. Funct. Mater., 2015, 25, 1170-1179. https://doi.org/10.1002/adfm.201403836
- L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, and Y. Huang, "Sulfur-doped Carbon with Enlarged Interlayer Distance as a High-performance Anode Material for Sodium-ion Batteries", Adv. Sci., 2015, 2, 1500195.
- Z. Hong, Y. Zhen, Y. Ruan, M. Kang, K. Zhou, J. M. Zhang, Z. Huang, and M. Wei, "Rational Design and General Synthesis of S-doped Hard Carbon with Tunable Doping Sites Toward Excellent Na-ion Storage Performance", Adv. Mater., 2018, 30, 1802035.
- W. Ai, L. Xie, Z. Du, Z. Zeng, J. Liu, H. Zhang, Y. Huang, W. Huang, and T. Yu, "A Novel Graphene-polysulfide Anode Material for High-performance Lithium-ion Batteries", Sci. Rep., 2013, 3, 1-5.
- W. Chen and L. Yan, "Preparation of Graphene by a Lowtemperature Thermal Reduction at Atmosphere Pressure", Nanoscale, 2010, 2, 559-563. https://doi.org/10.1039/b9nr00191c
- L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao, W. Song, J. Shi, M. Huang, and D. Mitlin, "Sulfur-nitrogen Rich Carbon as Stable High Capacity Potassium Ion Battery Anode: Performance and Storage Mechanisms", Energy Storage Mater., 2020, 27, 212-225. https://doi.org/10.1016/j.ensm.2020.02.004
- C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, "Nitrogen-doped Graphene by All-solid-state Ball-milling Graphite with Urea as a High-power Lithium Ion Battery Anode", J. Power Sources, 2017, 342, 157-164. https://doi.org/10.1016/j.jpowsour.2016.11.110
- Y. Yan, Y.-X. Yin, S. Xin, Y.-G. Guo, and L.-J. Wan, "Ionothermal Synthesis of Sulfur-doped Porous Carbons Hybridized with Graphene as Superior Anode Materials for Lithium-ion Batteries", Chem. Commun., 2012, 48, 10663-10665. https://doi.org/10.1039/c2cc36234a
- W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, and K. Jiang, "A High Performance Sulfur-doped Disordered Carbon Anode for Sodium Ion Batteries", Energy Environ. Sci., 2015, 8, 2916-2921. https://doi.org/10.1039/C5EE01985K
- S.-M. Hong, V. Etacheri, C. N. Hong, S. W. Choi, K. B. Lee, and V. G. Pol, "Enhanced Lithium-and Sodium-ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine", ACS Appl. Mater. Interfaces, 2017, 9, 18790-18798. https://doi.org/10.1021/acsami.7b03456